Skip to content
forked from lowRISC/ibex

custom instruction set extension implementation based on ibex

License

Notifications You must be signed in to change notification settings

RPBmk2/ibex_ise

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ibex OpenTitan configuration Nightly Regression

Ibex RISC-V Core

Ibex is a production-quality open source 32-bit RISC-V CPU core written in SystemVerilog. The CPU core is heavily parametrizable and well suited for embedded control applications. Ibex is being extensively verified and has seen multiple tape-outs. Ibex supports the Integer (I) or Embedded (E), Integer Multiplication and Division (M), Compressed (C), and B (Bit Manipulation) extensions.

Ibex was initially developed as part of the PULP platform under the name "Zero-riscy", and has been contributed to lowRISC who maintains it and develops it further. It is under active development.

Configuration

Ibex offers several configuration parameters to meet the needs of various application scenarios. The options include different choices for the architecture of the multiplier unit, as well as a range of performance and security features. The table below indicates performance, area and verification status for a few selected configurations. These are configurations on which lowRISC is focusing for performance evaluation and design verification (see supported configs).

Config "micro" "small" "maxperf" "maxperf-pmp-bmfull"
Features RV32EC RV32IMC, 3 cycle mult RV32IMC, 1 cycle mult, Branch target ALU, Writeback stage RV32IMCB, 1 cycle mult, Branch target ALU, Writeback stage, 16 PMP regions
Performance (CoreMark/MHz) 0.904 2.47 3.13 3.13
Area - Yosys (kGE) 16.85 26.60 32.48 66.02
Area - Commercial (estimated kGE) ~15 ~24 ~30 ~61
Verification status Red Green Green Green

Notes:

  • Performance numbers are based on CoreMark running on the Ibex Simple System platform. Note that different ISAs (use of B and C extensions) give the best results for different configurations. See the Benchmarks README for more information.
  • Yosys synthesis area numbers are based on the Ibex basic synthesis flow using the latch-based register file.
  • Commercial synthesis area numbers are a rough estimate of what might be achievable with a commercial synthesis flow and technology library.
  • For comparison, the original "Zero-riscy" core yields an area of 23.14kGE using our Yosys synthesis flow.
  • Verification status is a rough guide to the overall maturity of a particular configuration. Green indicates that verification is close to complete. Amber indicates that some verification has been performed, but the configuration is still experimental. Red indicates a configuration with minimal/no verification. Users must make their own assessment of verification readiness for any tapeout.
  • v.1.0.0 of the RISC-V Bit-Manipulation Extension is supported as well as the remaining sub-extensions of draft v.0.93 of the bitmanip spec. The latter are not ratified and there may be changes before ratification. See Standards Compliance in the Ibex documentation for more information.

Documentation

The Ibex user manual can be read online at ReadTheDocs. It is also contained in the doc folder of this repository.

Examples

The Ibex repository includes Simple System. This is an intentionally simple integration of Ibex with a basic system that targets simulation. It is intended to provide an easy way to get bare metal binaries running on Ibex in simulation.

A more complete example can be found in the Ibex Demo System repository. In particular it includes a integration of the PULP RISC-V debug module. It targets the Arty A7 FPGA board from Digilent and supports debugging via OpenOCD and GDB over USB (no external JTAG probe required). The Ibex Demo System is maintained by lowRISC but is not an official part of Ibex.

Contributing

We highly appreciate community contributions. To ease our work of reviewing your contributions, please:

  • Create your own branch to commit your changes and then open a Pull Request.
  • Split large contributions into smaller commits addressing individual changes or bug fixes. Do not mix unrelated changes into the same commit!
  • Write meaningful commit messages. For more information, please check out the contribution guide.
  • If asked to modify your changes, do fixup your commits and rebase your branch to maintain a clean history.

When contributing SystemVerilog source code, please try to be consistent and adhere to our Verilog coding style guide.

When contributing C or C++ source code, please try to adhere to the OpenTitan C++ coding style guide. All C and C++ code should be formatted with clang-format before committing. Either run clang-format -i filename.cc or git clang-format on added files.

To get started, please check out the "Good First Issue" list.

Issues and Troubleshooting

If you find any problems or issues with Ibex or the documentation, please check out the issue tracker and create a new issue if your problem is not yet tracked.

Questions?

Do not hesitate to contact us, e.g., on our public Ibex channel on Zulip!

License

Unless otherwise noted, everything in this repository is covered by the Apache License, Version 2.0 (see LICENSE for full text).

Credits

Many people have contributed to Ibex through the years. Please have a look at the credits file and the commit history for more information.

About

custom instruction set extension implementation based on ibex

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • SystemVerilog 76.2%
  • Python 12.5%
  • C++ 5.5%
  • Makefile 1.8%
  • Tcl 1.2%
  • Shell 0.8%
  • Other 2.0%