Python bindings for the Transformer models implemented in C/C++ using GGML library.
Also see ChatDocs
Models | Model Type |
---|---|
GPT-2 | gpt2 |
GPT-J, GPT4All-J | gptj |
GPT-NeoX, StableLM | gpt_neox |
LLaMA | llama |
MPT | mpt |
Dolly V2 | dolly-v2 |
StarCoder, StarChat | starcoder |
pip install ctransformers
For GPU (CUDA) support, set environment variable CT_CUBLAS=1
and install from source using:
CT_CUBLAS=1 pip install ctransformers --no-binary ctransformers
Show commands for Windows
On Windows PowerShell run:
$env:CT_CUBLAS=1
pip install ctransformers --no-binary ctransformers
On Windows Command Prompt run:
set CT_CUBLAS=1
pip install ctransformers --no-binary ctransformers
It provides a unified interface for all models:
from ctransformers import AutoModelForCausalLM
llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-gpt-2.bin', model_type='gpt2')
print(llm('AI is going to'))
If you are getting illegal instruction
error, try using lib='avx'
or lib='basic'
:
llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-gpt-2.bin', model_type='gpt2', lib='avx')
It provides a generator interface for more control:
tokens = llm.tokenize('AI is going to')
for token in llm.generate(tokens):
print(llm.detokenize(token))
It can be used with a custom or Hugging Face tokenizer:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('gpt2')
tokens = tokenizer.encode('AI is going to')
for token in llm.generate(tokens):
print(tokenizer.decode(token))
It also provides access to the low-level C API. See Documentation section below.
It can be used with models hosted on the Hub:
llm = AutoModelForCausalLM.from_pretrained('marella/gpt-2-ggml')
If a model repo has multiple model files (.bin
files), specify a model file using:
llm = AutoModelForCausalLM.from_pretrained('marella/gpt-2-ggml', model_file='ggml-model.bin')
It can be used with your own models uploaded on the Hub. For better user experience, upload only one model per repo.
To use it with your own model, add config.json
file to your model repo specifying the model_type
:
{
"model_type": "gpt2"
}
You can also specify additional parameters under task_specific_params.text-generation
.
See marella/gpt-2-ggml for a minimal example and marella/gpt-2-ggml-example for a full example.
It is integrated into LangChain. See LangChain docs.
Note: Currently only LLaMA models have GPU support.
To run some of the model layers on GPU, set the gpu_layers
parameter:
llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-llama.bin', model_type='llama', gpu_layers=50)
Parameter | Type | Description | Default |
---|---|---|---|
top_k |
int |
The top-k value to use for sampling. | 40 |
top_p |
float |
The top-p value to use for sampling. | 0.95 |
temperature |
float |
The temperature to use for sampling. | 0.8 |
repetition_penalty |
float |
The repetition penalty to use for sampling. | 1.1 |
last_n_tokens |
int |
The number of last tokens to use for repetition penalty. | 64 |
seed |
int |
The seed value to use for sampling tokens. | -1 |
max_new_tokens |
int |
The maximum number of new tokens to generate. | 256 |
stop |
List[str] |
A list of sequences to stop generation when encountered. | None |
stream |
bool |
Whether to stream the generated text. | False |
reset |
bool |
Whether to reset the model state before generating text. | True |
batch_size |
int |
The batch size to use for evaluating tokens. | 8 |
threads |
int |
The number of threads to use for evaluating tokens. | -1 |
context_length |
int |
The maximum context length to use. | -1 |
gpu_layers |
int |
The number of layers to run on GPU. | 0 |
Note: Currently only LLaMA and MPT models support the
context_length
parameter and only LLaMA models support thegpu_layers
parameter.
from_pretrained(
model_path_or_repo_id: str,
model_type: Optional[str] = None,
model_file: Optional[str] = None,
config: Optional[ctransformers.hub.AutoConfig] = None,
lib: Optional[str] = None,
local_files_only: bool = False,
**kwargs
) → LLM
Loads the language model from a local file or remote repo.
Args:
model_path_or_repo_id
: The path to a model file or directory or the name of a Hugging Face Hub model repo.model_type
: The model type.model_file
: The name of the model file in repo or directory.config
:AutoConfig
object.lib
: The path to a shared library or one ofavx2
,avx
,basic
.local_files_only
: Whether or not to only look at local files (i.e., do not try to download the model).
Returns:
LLM
object.
__init__(
model_path: str,
model_type: str,
config: Optional[ctransformers.llm.Config] = None,
lib: Optional[str] = None
)
Loads the language model from a local file.
Args:
model_path
: The path to a model file.model_type
: The model type.config
:Config
object.lib
: The path to a shared library or one ofavx2
,avx
,basic
.
The config object.
The context length of model.
The input embeddings.
The end-of-sequence token.
The unnormalized log probabilities.
The path to the model file.
The model type.
The number of tokens in vocabulary.
detokenize(tokens: Sequence[int], decode: bool = True) → Union[str, bytes]
Converts a list of tokens to text.
Args:
tokens
: The list of tokens.decode
: Whether to decode the text as UTF-8 string.
Returns: The combined text of all tokens.
embed(
input: Union[str, Sequence[int]],
batch_size: Optional[int] = None,
threads: Optional[int] = None
) → List[float]
Computes embeddings for a text or list of tokens.
Note: Currently only LLaMA models support embeddings.
Args:
input
: The input text or list of tokens to get embeddings for.batch_size
: The batch size to use for evaluating tokens. Default:8
threads
: The number of threads to use for evaluating tokens. Default:-1
Returns: The input embeddings.
eval(
tokens: Sequence[int],
batch_size: Optional[int] = None,
threads: Optional[int] = None
) → None
Evaluates a list of tokens.
Args:
tokens
: The list of tokens to evaluate.batch_size
: The batch size to use for evaluating tokens. Default:8
threads
: The number of threads to use for evaluating tokens. Default:-1
generate(
tokens: Sequence[int],
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
reset: Optional[bool] = None
) → Generator[int, NoneType, NoneType]
Generates new tokens from a list of tokens.
Args:
tokens
: The list of tokens to generate tokens from.top_k
: The top-k value to use for sampling. Default:40
top_p
: The top-p value to use for sampling. Default:0.95
temperature
: The temperature to use for sampling. Default:0.8
repetition_penalty
: The repetition penalty to use for sampling. Default:1.1
last_n_tokens
: The number of last tokens to use for repetition penalty. Default:64
seed
: The seed value to use for sampling tokens. Default:-1
batch_size
: The batch size to use for evaluating tokens. Default:8
threads
: The number of threads to use for evaluating tokens. Default:-1
reset
: Whether to reset the model state before generating text. Default:True
Returns: The generated tokens.
is_eos_token(token: int) → bool
Checks if a token is an end-of-sequence token.
Args:
token
: The token to check.
Returns:
True
if the token is an end-of-sequence token else False
.
reset() → None
Resets the model state.
sample(
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None
) → int
Samples a token from the model.
Args:
top_k
: The top-k value to use for sampling. Default:40
top_p
: The top-p value to use for sampling. Default:0.95
temperature
: The temperature to use for sampling. Default:0.8
repetition_penalty
: The repetition penalty to use for sampling. Default:1.1
last_n_tokens
: The number of last tokens to use for repetition penalty. Default:64
seed
: The seed value to use for sampling tokens. Default:-1
Returns: The sampled token.
tokenize(text: str) → List[int]
Converts a text into list of tokens.
Args:
text
: The text to tokenize.
Returns: The list of tokens.
__call__(
prompt: str,
max_new_tokens: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
stop: Optional[Sequence[str]] = None,
stream: Optional[bool] = None,
reset: Optional[bool] = None
) → Union[str, Generator[str, NoneType, NoneType]]
Generates text from a prompt.
Args:
prompt
: The prompt to generate text from.max_new_tokens
: The maximum number of new tokens to generate. Default:256
top_k
: The top-k value to use for sampling. Default:40
top_p
: The top-p value to use for sampling. Default:0.95
temperature
: The temperature to use for sampling. Default:0.8
repetition_penalty
: The repetition penalty to use for sampling. Default:1.1
last_n_tokens
: The number of last tokens to use for repetition penalty. Default:64
seed
: The seed value to use for sampling tokens. Default:-1
batch_size
: The batch size to use for evaluating tokens. Default:8
threads
: The number of threads to use for evaluating tokens. Default:-1
stop
: A list of sequences to stop generation when encountered. Default:None
stream
: Whether to stream the generated text. Default:False
reset
: Whether to reset the model state before generating text. Default:True
Returns: The generated text.