Implementation of Manuscript "Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning"
- Global artificial learning:
Modify the server_dir
based on your own environment. Then, run:
python train_electric_cifar10_readout.py -e 3b -g gpu_idx -l 0.01 -ep 200
- Local optical learning:
Modify the server_dir
, folder_to_fit
, and gpu index based on your own environment. Then, run:
python train_electric_optical_kernel.py
- test accuracy:
Modify the folder_to_fit
based on your own environment. Then, run:
python test_electric_optical_kernel.py -e 3bs -g gpu_index
Modify the server_dir
based on your own environment.
run:
python train_end2end_cifar10_readout.py -e 33l -g gpu_idx -l 0.01 -bs 32
for ONN-3-3
run:
python train_end2end_cifar10_readout.py -e 37l -g gpu_idx -l 0.01 -bs 8
for ONN-3-7