Skip to content

RenaissanceEngineering/Deep_Learning_in_Asset_Pricing

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning in Asset Pricing

Table of Contents

This repository contains empirical results in paper to estimate a general non-linear asset pricing model with a deep neural network applied to all U.S. equity data combined with all relevant macroeconomic and firm-specific information.


Empirical Results

We compare our GAN model, with a simple forecasting feedforward network model labeled as FFN, the linear special case of GAN labeled as LS and a regularized linear model labeled as EN.

  • Sharpe Ratio
Model SR (Train) SR (Valid) SR (Test)
LS 1.80 0.58 0.42
EN 1.37 1.15 0.50
FFN 0.45 0.42 0.44
GAN 2.68 1.43 0.75
  • Explained Variation
Model EV (Train) EV (Valid) EV (Test)
LS 0.09 0.03 0.03
EN 0.12 0.05 0.04
FFN 0.11 0.04 0.04
GAN 0.20 0.09 0.08
  • Cross-Sectional R2
Model XS-R2 (Train) XS-R2 (Valid) XS-R2 (Test)
LS 0.15 0.00 0.14
EN 0.17 0.02 0.19
FFN 0.14 -0.00 0.15
GAN 0.12 0.01 0.23

Related Resources

Author

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%