Skip to content

ReprieveOG/FND

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 

Repository files navigation

FAKE NEWS DETECTION

Table of Contents

Markdown format:

- Paper Name. 
  [[link]](link) 
  [[code]](link).
  - Author 1, Author 2, Author 3. *Conference/Journal*, Year.

Survey

  • The Future of False Information Detection on Social Media: New Perspectives and Trends. [link]

    • BIN GUO, YASAN DING. ACM Computing Surveys, 2020.
  • Fighting False Information from Propagation Process: A Survey. [link]

    • LING SUN, YUAN RAO. ACM Computing Surveys, 2023.
  • 基于传播意图特征的虚假新闻检测方法综述.

    • 毛震东, 赵博文. 信号处理. 2022.
  • 基于事实信息核查的虚假新闻检测综述.

    • 杨昱洲, 周杨铭, 应祺超. 中国传媒大学学报. 2023.
  • Detecting and Mitigating the Dissemination of Fake News: Challenges and Future Research Opportunities. [link]

    • Wajiha Shahid, Bahman Jamshidi, Saqib Hakak. IEEE Transactions on Computational Social Systems, 2022
  • Decoding the AI Pen: Techniques and Challenges in Detecting AI-Generated Text. [link]

    • Sara Abdali, Richard Anarfi, CJ Barberan, Jia He. KDD, 2024.

Text-based Detection

  • Memory-Guided Multi-View Multi-Domain Fake News Detection. [link] [code]

    • Yongchun Zhu, Qiang Sheng, Juan Cao. IEEE Transactions on Knowledge and Data Engineering, 2020.
  • Bad Actor, Good Advisor: Exploring the Role of Large Language Models in Fake News Detection. [link] [code]

    • Beizhe Hu, Qiang Sheng, Juan Cao. AAAI, 2024
  • An Integrated Multi-Task Model for Fake News Detection. [link]

    • Qing Liao, Hao Han, Xuan Wang. IEEE Transactions on Knowledge and Data Engineering, 2021.
  • TELLER: A Trustworthy Framework For Explainable, Generalizable and Controllable Fake News Detection. [link] [code]

    • Hui Liu, Wenya Wang, Haoru Li. ACL, 2024
    • Explainable Detection
  • Weak Supervision for Fake News Detection via Reinforcement Learning. [link] [code]

    • Yaqing Wang, Weifeng Yang, Fenglong Ma. AAAI, 2020
  • MSynFD: Multi-hop Syntax Aware Fake News Detection. [link]

    • Liang Xiao, Qi Zhang, Chongyang Shi. WWW, 2024
  • Mixed Graph Neural Network-Based Fake News Detection for Sustainable Vehicular Social Networks. [link]

    • Zhiwei Guo, Keping Yu, Alireza Jolfaei. IEEE Transactions on Intelligent Transportation Systems. 2022
  • Fake Review Detection Using Deep Neural Networks with Multimodal Feature Fusion Method. [link]

    • Xin Li, Lirong Chen. ICPADS, 2023
  • On Fake News Detection with LLM Enhanced Semantics Mining. [link]

    • Xiaoxiao Ma, Yuchen Zhang, Kaize Ding. EMNLP, 2024
  • Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach. [link]

    • Yanchen Liu, Mingyu Derek Ma, Diyi Yang. EMNLP, 2024
  • Fake News in Sheep’s Clothing: Robust Fake News Detection Against LLM-Empowered Style Attacks. [link]

    • Jiaying Wu, Jiafeng Guo, Bryan Hooi. KDD, 2024
  • OUTFOX: LLM-Generated Essay Detection Through In-Context Learning with Adversarially Generated Examples. [link] [code]

    • Ryuto Koike, Masahiro Kaneko, Naoaki Okazaki. AAAI, 2024

Multi-modal Detection

  • Bootstrapping Multi-view Representations for Fake News Detection. [link] [code]

    • Q Ying, X Hu, Y Zhou, Z Qian, D Zeng. AAAI, 2023.
  • Cross-modal Ambiguity Learning for Multimodal Fake News Detection. [link] [code]

    • Y Chen, D Li, P Zhang, J Sui, Q Lv, L Tun. WWW, 2022.
  • Causal Inference for Leveraging Image-Text Matching Bias in Multi-Modal Fake News Detection. [link]

    • Linmei Hu, Ziwei Chen, Ziwang Zhao. IEEE Transactions on Knowledge and Data Engineering, 2022.
  • MVAE: Multimodal Variational Autoencoder for Fake News Detection. [link] [code]

    • D Khattar, JS Goud, M Gupta, V Varma. WWW, 2019.
  • Hierarchical Multi-modal Contextual Attention Network for Fake News Detection. [link] [code]

    • S Qian, J Wang, J Hu, Q Fang, C Xu. SIGIR, 2021.
  • Unraveling the Tangle of Disinformation: A Multimodal Approach for Fake News Identification on Social Media. [link]

    • Junaid Rashid, Jungeun Kim, Anum Masood. WWW, 2024
  • Detecting and Grounding Multi-Modal Media Manipulation and Beyond. [link] [code]

    • Rui Shao, Tianxing Wu, Jianlong Wu. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024
  • Unsupervised Domain-Agnostic Fake News Detection Using Multi-Modal Weak Signals. [link]

    • Amila Silva, Ling Luo, Shanika Karunasekera. IEEE Transactions on Knowledge and Data Engineering, 2024.
  • Leveraging Intra and Inter Modality Relationship for Multimodal Fake News Detection. [link] [code]

    • S Singhal, T Pandey, S Mrig, RR Shah. WWW, 2022.
  • Improving Generalization for Multimodal Fake News Detection. [link] [code]

    • S Tahmasebi, S Hakimov, R Ewerth. ICMR, 2023.
  • Fake News Detection via Multi-scale Semantic Alignment and Cross-modal Attention. [link] [code]

    • Jiandong Wang, Hongguang Zhang, Chun Liu. SIGIR, 2024
  • Cross-modal Contrastive Learning for Multimodal Fake News Detection. [link] [code]

    • Longzheng Wang, Chuang Zhang, Hongbo Xu. ACM MM, 2023.
  • Intra and Inter-modality Incongruity Modeling and Adversarial Contrastive Learning for Multimodal Fake News Detection. [link]

    • Siqi Wei, Bin Wu. ICMR, 2024
  • Human Cognition-Based Consistency Inference Networks for Multi-Modal Fake News Detection. [link]

    • Lianwei Wu, Pusheng Liu, Yongqiang Zhao. IEEE Transactions on Knowledge and Data Engineering, 2023.
  • Multimodal Fusion with Co-Attention Networks for Fake News Detection. [link] [code]

    • Y Wu, P Zhan, Y Zhang, L Wang. ACL, 2021.
  • Hierarchical Semantic Enhancement Network for Multimodal Fake News Detection. [link]

    • Qiang Zhang, Jiawei Liu, Fanrui Zhang. ACM MM, 2023
  • Multi-modal Fake News Detection on Social Media via Multi-grained Information Fusion. [link] [code]

    • Y Zhou, Y Yang, Q Ying, Z Qian, X Zhang. ICMR, 2023.
  • Knowledge Enhanced Vision and Language Model for Multi-Modal Fake News Detection. [link]

    • Xingyu Gao, Xi Wang, Zhenyu Chen. IEEE Transactions on Multimedia, 2024
  • Multimodal fake news detection via progressive fusion networks. [link]

    • J Jing, H Wu, J Sun, X Fang, H Zhang. Information Processing & Management, 2023.
  • Positive Unlabeled Fake News Detection via Multi-Modal Masked Transformer Network. [link]

    • Jinguang Wang, Shengsheng Qian, Jun Hu. IEEE Transactions on Multimedia, 2024.
  • Modeling Both Intra- and Inter-Modality Uncertainty for Multimodal Fake News Detection. [link]

    • Lingwei Wei, Dou Hu, Wei Zhou. IEEE Transactions on Multimedia, 2023
  • Multimodal Fake News Detection via CLIP-Guided Learning. [link]

    • Yangming Zhou, Yuzhou Yang, Qichao Ying. ICME, 2023.
  • Learning Frequency-Aware Cross-Modal Interaction for Multimodal Fake News Detection. [link]

    • Yan Bai, Yanfeng Liu, Yongjun Li. IEEE Transactions on Computational Social Systems, 2024.
  • MAFE: Multi-modal Alignment via Mutual Information Maximum Perspective in Multi-modal Fake News Detection. [link]

    • Haimei Qin, Yaqi Jing. CSCWD, 2024.
  • Modality and Event Adversarial Networks for Multi-Modal Fake News Detection. [link]

    • Pengfei Wei, Fei Wu, Ying Sun. IEEE Signal Processing Letters. 2022.
  • FakeSV: A Multimodal Benchmark with Rich Social Context for Fake News Detection on Short Video Platforms. [link] [code]

    • Peng Qi, Yuyan Bu, Juan Cao. AAAI, 2023.
  • “Image, Tell me your story!” Predicting the original meta-context of visual misinformation. [link] [code]

    • Jonathan Tonglet, Marie-Francine Moens, Iryna Gurevych. EMNLP, 2024
  • FakingRecipe: Detecting Fake News on Short Video Platforms from the Perspective of Creative Process. [link] [code]

    • Yuyan Bu, Qiang Sheng, Juan Cao, Peng Qi. ACM MM, 2024
  • Mitigating World Biases: A Multimodal Multi-View Debiasing Framework for Fake News Video Detection. [link]

    • Zhi Zeng, Minnan Luo, Xiangzheng Kong. ACM MM, 2024
  • FKA-Owl: Advancing Multimodal Fake News Detection through Knowledge-Augmented LVLMs. [link] [code]

    • Xuannan Liu, Peipei Li, Huaibo Huang. ACM MM, 2024
  • Harmfully Manipulated Images Matter in Multimodal Misinformation Detection. [link]

    • Bing Wang, Shengsheng Wang, Changchun Li. ACM MM, 2024
  • MMDFND: Multi-modal Multi-Domain Fake News Detection. [link]

    • Yu Tong, Weihai Lu, Zhe Zhao. ACM MM, 2024
  • Vaccine Misinformation Detection in X using Cooperative Multimodal Framework. [link]

    • Usman Naseem, Adam Dunn, Matloob Khushi, Jinman Kim. ACM MM, 2024
  • Frequency Spectrum Is More Effective for Multimodal Representation and Fusion: A Multimodal Spectrum Rumor Detector. [link] [code]

    • An Lao, Qi Zhang, Chongyang Shi. AAAI, 2024
  • Unveiling Implicit Deceptive Patterns in Multi-Modal Fake News via NeuroSymbolic Reasoning. [link] [code]

    • Yiqi Dong, Dongxiao He, Xiaobao Wang. AAAI, 2024
  • Reinforced Adaptive Knowledge Learning for Multimodal Fake News Detection. [link]

    • Litian Zhang, Xiaoming Zhang, Chaozhuo Li. AAAI, 2024

Using Social Context

  • MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection. [link] [code]

    • J Zheng, X Zhang, S Guo, Q Wang, W Zang, Y Zhang. IJCAI, 2022.
  • User Preference-aware Fake News Detection. [link] [code]

    • Y Dou, K Shu, C Xia, PS Yu, L Sun. SIGIR, 2021.
  • A Self-Attention Mechanism-Based Model for Early Detection of Fake News. [link]

    • Bahman Jamshidi, Saqib Hakak, Rongxing Lu. IEEE Transactions on Computational Social Systems, 2023.
  • Explainable Detection of Fake News on Social Media Using Pyramidal Co-Attention Network. [link]

    • Fazlullah Khan, Ryan Alturki, Gautam Srivastava. IEEE Transactions on Computational Social Systems, 2022.
  • FIND: Privacy-Enhanced Federated Learning for Intelligent Fake News Detection. [link]

    • Zhuotao Lian, Chen Zhang, Chunhua Su. IEEE Transactions on Computational Social Systems, 2023.
  • MEFaND: A Multimodel Framework for Early Fake News Detection. [link]

    • Asma Sormeily, Sajjad Dadkhah. IEEE Transactions on Computational Social Systems, 2024.
  • Propagation Structure-Aware Graph Transformer for Robust and Interpretable Fake News Detection. [link] [code]

    • Junyou Zhu, Chao Gao, Ze Yin, Xianghua Li, Juergen Kurths. KDD, 2024
  • Leveraging Exposure Networks for Detecting Fake News Sources. [link]

  • Maor Reuben, Lisa Friedland, Rami Puzis, Nir Grinberg. KDD, 2024

  • Mitigating Social Hazards: Early Detection of Fake News via Diffusion-Guided Propagation Path Generation. [link]

    • Litian Zhang, Xiaoming Zhang, Chaozhuo Li. ACM MM, 2024
  • GAMC: An Unsupervised Method for Fake News Detection Using Graph Autoencoder with Masking. [link]

    • Shu Yin, Peican Zhu, Lianwei Wu. AAAI, 2024
  • Propagation Tree Is Not Deep: Adaptive Graph Contrastive Learning Approach for Rumor Detection. [link] [code]

    • Chaoqun Cui, Caiyan Jia. AAAI, 2024

Fact-checking

  • Improving Fake News Detection by Using an Entity-enhanced Framework to Fuse Diverse Multimodal Clues. [link]

    • P Qi, J Cao, X Li, H Liu, Q Sheng, X Mi, Q He. ACM MM, 2021.
    • Multi-modal Detection
  • SNIFFER: Multimodal Large Language Model for Explainable Out-of-Context Misinformation Detection. [link] [code]

    • Peng Qi, Zehong Yan, Wynne Hsu. CVPR, 2024.
    • Multi-modal Detection, Explainable Detection
  • Do We Need Language-Specific Fact-Checking Models? The Case of Chinese. [link]

    • Caiqi Zhang, Zhijiang Guo, Andreas Vlachos. EMNLP, 2024
  • MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents. [link] [code]

    • Liyan Tang, Philippe Laban, Greg Durrett. EMNLP, 2024
  • Heterogeneous Graph Reasoning for Fact Checking over Texts and Tables. [link]

    • Haisong Gong, Weizhi Xu, Shu Wu. AAAI, 2024
  • Causal Walk: Debiasing Multi-Hop Fact Verification with Front-Door Adjustment. [link] [code]

    • Congzhi Zhang, Linhai Zhang, Deyu Zhou. AAAI, 2024

Datasets

  • MCFEND: A Multi-source Benchmark Dataset for Chinese Fake News Detection. [link] [code]
    • Yupeng Li, Haorui He. WWW, 2024
  • The Largest Social Media Ground-Truth Dataset for Real/Fake Content: TruthSeeker. [link] [code]
    • Sajjad Dadkhah, Xichen Zhang, Alexander Gerald Weismann. IEEE Transactions on Computational Social Systems. 2023
  • CFEVER: A Chinese Fact Extraction and VERification Dataset. [link] [code]
    • Ying-Jia Lin, Chun-Yi Lin, Chia-Jen Yeh. AAAI, 2024

Reference

[Fudan MAS]

SIGIR 2024 Tutorial: Preventing and Detecting Misinformation Generated by Large Language Models

ICTMCG/LLM-for-misinformation-research: Paper list of misinformation research using (multi-modal) large language models, i.e., (M)LLMs.

wangbing1416/Awesome-Fake-News-Detection: An awesome paper list of fake news detection (FND) and rumor detection.

llm-misinformation-survey

Awesome-Misinfo-Video-Detection

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published