Skip to content

RobTheOceanographer/thredds_crawler

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

thredds_crawler

Travis Build Status

A simple crawler/parser for THREDDS catalogs

Installation

thredds_crawler is available on pypi and is easiest installed using pip.

pip install thredds_crawler

lxml and requests will be installed automatically

Usage

Select

You can select datasets based on their THREDDS ID using the 'select' parameter. Python regex is supported.

> from thredds_crawler.crawl import Crawl
> c = Crawl("http://tds.maracoos.org/thredds/MODIS.xml", select=[".*-Agg"])
> print c.datasets
[
  <LeafDataset id: MODIS-Agg, name: MODIS-Complete Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-2009-Agg, name: MODIS-2009 Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-2010-Agg, name: MODIS-2010 Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-2011-Agg, name: MODIS-2011 Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-2012-Agg, name: MODIS-2012 Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-2013-Agg, name: MODIS-2013 Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-One-Agg, name: 1-Day-Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-Three-Agg, name: 3-Day-Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-Seven-Agg, name: 7-Day-Aggregation, services: ['OPENDAP', 'ISO']>
]

Skip

You can skip datasets based on their name and catalogRefs based on their xlink:title. By default, the crawler uses some common regular expressions to skip lists of thousands upon thousands of individual files that are part of aggregations or FMRCs:

  • .*files.*
  • .*Individual Files.*
  • .*File_Access.*
  • .*Forecast Model Run.*
  • .*Constant Forecast Offset.*
  • .*Constant Forecast Date.*

By setting the skip parameter to anything other than a superset of the default you run the risk of having some angry system admins after you.

You can access the default skip list through the Crawl.SKIPS class variable

> from thredds_crawler.crawl import Crawl
> print Crawl.SKIPS
[
  '.*files.*',
  '.*Individual Files.*',
  '.*File_Access.*',
  '.*Forecast Model Run.*',
  '.*Constant Forecast Offset.*',
  '.*Constant Forecast Date.*'
]

If you need to remove or add a new skip, it is strongly encouraged you use the SKIPS class variable as a starting point!

> from thredds_crawler.crawl import Crawl
> skips = Crawl.SKIPS + [".*-Day-Aggregation"]
> c = Crawl("http://tds.maracoos.org/thredds/MODIS.xml", select=[".*-Agg"], skip=skips)
> print c.datasets
[
  <LeafDataset id: MODIS-Agg, name: MODIS-Complete Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-2009-Agg, name: MODIS-2009 Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-2010-Agg, name: MODIS-2010 Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-2011-Agg, name: MODIS-2011 Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-2012-Agg, name: MODIS-2012 Aggregation, services: ['OPENDAP', 'ISO']>,
  <LeafDataset id: MODIS-2013-Agg, name: MODIS-2013 Aggregation, services: ['OPENDAP', 'ISO']>,
]

Debugging

You can pass in a debug=True parameter to Crawl to log to STDOUT what is actually happening.

> from thredds_crawler.crawl import Crawl
> skips = Crawl.SKIPS + [".*-Day-Aggregation"]
>>> c = Crawl("http://tds.maracoos.org/thredds/MODIS.xml", select=[".*-Agg"], skip=skips, debug=True)
Crawling: http://tds.maracoos.org/thredds/MODIS.xml
Skipping catalogRef based on 'skips'.  Title: MODIS Individual Files
Skipping catalogRef based on 'skips'.  Title: 1-Day Individual Files
Skipping catalogRef based on 'skips'.  Title: 3-Day Individual Files
Skipping catalogRef based on 'skips'.  Title: 8-Day Individual Files
Processing MODIS-Agg
Processing MODIS-2009-Agg
Processing MODIS-2010-Agg
Processing MODIS-2011-Agg
Processing MODIS-2012-Agg
Processing MODIS-2013-Agg
Skipping dataset based on 'skips'.  Name: 1-Day-Aggregation

Logging

If you are using thredds_crawler from inside of another program, you can access its logs using the named logger thredds_crawler to control the log level. If you access to the named logger, do not include debug=True when initializing the Crawl object.

import logging
crawl_log = logging.getLogger('thredds_crawler')
crawl_log.setLevel(logging.WARNING)

Dataset

You can get some basic information about a LeafDataset, including the services available.

> from thredds_crawler.crawl import Crawl
> c = Crawl("http://tds.maracoos.org/thredds/MODIS.xml", select=[".*-Agg"])
> dataset = c.datasets[0]
> print dataset.id
MODIS-Agg
> print dataset.name
MODIS-Complete Aggregation
> print dataset.services
[
  {
    'url': 'http://tds.maracoos.org/thredds/dodsC/MODIS-Agg.nc',
    'name': 'odap',
    'service': 'OPENDAP'
  },
  {
    'url': 'http://tds.maracoos.org/thredds/iso/MODIS-Agg.nc',
    'name': 'iso',
    'service': 'ISO'
  }
]

If you have a list of datasets you can easily return all endpoints of a certain type:

> from thredds_crawler.crawl import Crawl
> c = Crawl("http://tds.maracoos.org/thredds/MODIS.xml", select=[".*-Agg"])
> urls = [s.get("url") for d in c.datasets for s in d.services if s.get("service").lower() == "opendap"]
> print urls
[
  'http://tds.maracoos.org/thredds/dodsC/MODIS-Agg.nc',
  'http://tds.maracoos.org/thredds/dodsC/MODIS-2009-Agg.nc',
  'http://tds.maracoos.org/thredds/dodsC/MODIS-2010-Agg.nc',
  'http://tds.maracoos.org/thredds/dodsC/MODIS-2011-Agg.nc',
  'http://tds.maracoos.org/thredds/dodsC/MODIS-2012-Agg.nc',
  'http://tds.maracoos.org/thredds/dodsC/MODIS-2013-Agg.nc',
  'http://tds.maracoos.org/thredds/dodsC/MODIS-One-Agg.nc',
  'http://tds.maracoos.org/thredds/dodsC/MODIS-Three-Agg.nc',
  'http://tds.maracoos.org/thredds/dodsC/MODIS-Seven-Agg.nc'
]

You can also obtain the dataset size. This returns the size on disk if the informaton is available in the TDS catalog. If it is not available and a DAP endpoint is available, it returns the theoretical size of all of thh variables. This isn't necessarialy the size on disk, because it does not account for missing_value and _FillValue space.

> from thredds_crawler.crawl import Crawl
> c = Crawl("http://thredds.axiomalaska.com/thredds/catalogs/cencoos.html", select=["MB_.*"])
> sizes = [d.size for d in c.datasets]
> print sizes
[29247.410283999998, 72166.289680000002]

Metadata

The entire THREDDS catalog metadata record is saved along with the dataset object. It is an etree Element object ready for you to pull information out of. See the THREDDS metadata spec

> from thredds_crawler.crawl import Crawl
> c = Crawl("http://tds.maracoos.org/thredds/MODIS.xml", select=[".*-Agg"])
> dataset = c.datasets[0]
> print dataset.metadata.find("{http://www.unidata.ucar.edu/namespaces/thredds/InvCatalog/v1.0}documentation").text
Ocean Color data are provided as a service to the broader community, and can be
influenced by sensor degradation and or algorithm changes. We make efforts to keep
this dataset updated and calibrated. The products in these files are experimental.
Aggregations are simple means of available data over the specified time frame. Use at
your own discretion.

Use Case

Below is a python script that can be used to harvest THEDDS catalogs and save the ISO metadata files to a local directory

import os
import urllib
from thredds_crawler.crawl import Crawl

import logging
import logging.handlers
logger = logging.getLogger('thredds_crawler')
fh = logging.handlers.RotatingFileHandler('/var/log/iso_harvest/iso_harvest.log', maxBytes=1024*1024*10, backupCount=5)
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
logger.setLevel(logging.DEBUG)

SAVE_DIR="/srv/http/iso"

THREDDS_SERVERS = {
    "aoos":      "http://thredds.axiomalaska.com/thredds/catalogs/aoos.html",
    "cencoos":   "http://thredds.axiomalaska.com/thredds/catalogs/cencoos.html",
    "maracoos" : "http://tds.maracoos.org/thredds/catalog.html",
    "glos":      "http://tds.glos.us/thredds/catalog.html"
}

for subfolder, thredds_url in THREDDS_SERVERS.items():
  logger.info("Crawling %s (%s)" % (subfolder, thredds_url))
  crawler = Crawl(thredds_url, debug=True)
  isos = [(d.id, s.get("url")) for d in crawler.datasets for s in d.services if s.get("service").lower() == "iso"]
  filefolder = os.path.join(SAVE_DIR, subfolder)
  if not os.path.exists(filefolder):
    os.makedirs(filefolder)
  for iso in isos:
    try:
      filename = iso[0].replace("/", "_") + ".iso.xml"
      filepath = os.path.join(filefolder, filename)
      logger.info("Downloading/Saving %s" % filepath)
      urllib.urlretrieve(iso[1], filepath)
    except BaseException:
      logger.exception("Error!")

Known Issues

  • Single threaded

About

A crawler/parser for THREDDS catalogs

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%