-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
劉佳婷
authored and
劉佳婷
committed
Apr 11, 2022
1 parent
9b3869a
commit d420320
Showing
5 changed files
with
181 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,17 +1,29 @@ | ||
# EE559_Project | ||
|
||
- 2-class problem | ||
|
||
- Dataset (# data pts.) | ||
- training: 184 | ||
- Class 0: 69 | ||
- Class 1: 115 | ||
- Class 0: 69 (37.5%) | ||
- Class 1: 115 (62.5%) | ||
- test: 60 | ||
|
||
- Required reference systems | ||
- Trivial system \ | ||
`python3 trivial.py` | ||
- F1-score: 0.5 | ||
- Accuracy: 0.5 | ||
- Test F1-score: 0.5 | ||
- Test Accuracy: 0.5 | ||
|
||
- Baseline system \ | ||
`python3 baseline.py` | ||
- F1-score: 0.6286 | ||
- Accuracy: 0.7833 | ||
- Drop "Date" | ||
- Test F1-score: 0.6286 | ||
- Test Accuracy: 0.7833 | ||
|
||
- Technique 1: Perceptron | ||
`python3 perceptron.py --M 4 --epoch 200` (M-fold cross-validation) | ||
- Drop "Date" | ||
- Val F1-score: 0.924 | ||
- Val Accuracy: 0.9239 | ||
- Test F1-score: 0.902 | ||
- Test Accuracy: 0.9167 |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
import argparse, random | ||
import numpy as np | ||
import pandas as pd | ||
from statistics import mean | ||
|
||
from utils.read_data import read_data | ||
from utils.metrics import metrics | ||
|
||
''' | ||
Using Stochastic GD - variant 1 | ||
Randomly shuffle before each epoch | ||
Use Margin = 0.5 | ||
Initial weight vector is random i.i.d. between 0.001 & 0.1 | ||
lr = 100/(1000+i), where i is the number of iterations | ||
Hailting condition: | ||
1. All data pts are correctly classified | ||
2. After 20000 iterations | ||
''' | ||
# TODO: perceptron with margin | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--M', default=4, help='M-fold cross validation') | ||
parser.add_argument('--epoch', default=200, help='M-fold cross validation') | ||
args = parser.parse_args() | ||
|
||
def J_value(data, label, w): | ||
J = 0 | ||
for i in range(label.shape[0]): | ||
z = 1 if label.iloc[i] == 1 else -1 | ||
x = np.array(data.iloc[i]) | ||
L = np.dot(w, x) * z | ||
if L <= 0: J += -L | ||
return J | ||
|
||
def predict(data, label, w): | ||
result = [] | ||
for i in range(label.shape[0]): | ||
z = 1 if label.iloc[i] == 1 else -1 | ||
x = np.array(data.iloc[i]) | ||
if np.dot(w, x) * z > 0: | ||
result.append(label.iloc[i]) | ||
else: | ||
pred = 1 if label.iloc[i]==0 else 1 | ||
result.append(pred) | ||
return result | ||
|
||
def init_train_param(D): | ||
""" | ||
Args: D: # features | ||
""" | ||
w = [] # weight vector | ||
for k in range(D): | ||
w.append(random.uniform(0.001, 0.1)) | ||
it = 0 # iteration counter | ||
lr = 100/(1000+it) #learning rate | ||
not_l_s = False # not linearly separable | ||
c_c = 0 # correctly classified | ||
w_vec, J_vec = [None] * 500, [None] * 500 | ||
return w, it, lr, not_l_s, c_c, w_vec, J_vec | ||
|
||
def train(X, y, N, idx, w, it, lr, not_l_s, c_c, w_vec, J_vec): | ||
""" | ||
Args: | ||
idx: training dataframe index for shuffling use | ||
it: iteration counter | ||
not_l_s: not linearly separable (bool var.); default: False | ||
c_c: # correctly classified pts; default: 0 | ||
w_vec: list storing weight vectors | ||
J_vec: list storing loss values | ||
Return: weight vector that gives the lowest loss | ||
""" | ||
for epoch in range(args.epoch): | ||
# Shuffle at each epoch | ||
idx = random.sample(list(idx),N) | ||
if it >= 20000: | ||
not_l_s = True | ||
break | ||
for i in idx: | ||
if c_c == N: | ||
w_hat = w | ||
print("data is linearly separable") | ||
print("w_hat=", w_hat) | ||
print("J=", J_value(X, y, w_hat)) | ||
it += 1 | ||
if it >= 9501 and it <= 10000: | ||
w_vec[it-9501] = w | ||
if it == 10000: break | ||
x = np.array(X.iloc[i]) | ||
z = 1 if y.iloc[i] == 1 else -1 | ||
if np.dot(w, x) * z <= 0: | ||
w = w + lr * z * x | ||
if c_c > 0: | ||
c_c = 0 | ||
else: | ||
c_c += 1 | ||
|
||
if not_l_s: | ||
for i,w in enumerate(w_vec): | ||
J_vec[i] = J_value(X, y, w) | ||
|
||
index = np.argmin(J_vec) | ||
w_hat = w_vec[index] | ||
print("w_hat=", w_hat) | ||
print("J=", J_vec[index]) | ||
|
||
return w_hat | ||
|
||
|
||
def main(): | ||
X_tr, y_tr = read_data('datasets/algerian_fires_train.csv') | ||
X_test, y_test = read_data('datasets/algerian_fires_test.csv') | ||
# drop first column ("Date" feature) | ||
X_tr, X_test = X_tr.iloc[:,1:], X_test.iloc[:,1:] | ||
F1_result, Acc_result = [0]*args.M, [0]*args.M | ||
for m in range(args.M): | ||
X_val, y_val = X_tr.iloc[46*m:46*(m+1)], y_tr.iloc[46*m:46*(m+1)] | ||
if m == 0: X_tr_prime, y_tr_prime = X_tr.iloc[46:], y_tr.iloc[46:] | ||
elif m == 1: | ||
X_tr_prime = pd.concat([X_tr.iloc[:46], X_tr.iloc[92:]]) | ||
y_tr_prime = pd.concat([y_tr.iloc[:46], y_tr.iloc[92:]]) | ||
elif m == 2: | ||
X_tr_prime = pd.concat([X_tr.iloc[:92], X_tr.iloc[138:]]) | ||
y_tr_prime = pd.concat([y_tr.iloc[:92], y_tr.iloc[138:]]) | ||
else: X_tr_prime, y_tr_prime = X_tr.iloc[:138], y_tr.iloc[:138] | ||
|
||
# Shuffle | ||
N = X_tr_prime.shape[0] | ||
idx = np.arange(N) | ||
D = X_tr_prime.shape[1] | ||
w, it, lr, not_linearly_separable, correctly_classified, w_vec, J_vec \ | ||
= init_train_param(D) | ||
w_hat = train(X_tr_prime, y_tr_prime, N, idx, w, it, lr, \ | ||
not_linearly_separable, correctly_classified, w_vec, J_vec) | ||
|
||
y_val_pred = predict(X_val, y_val, w_hat) | ||
F1_result[m], Acc_result[m] = metrics(y_val, y_val_pred, "perceptron", work='val') | ||
|
||
print("Val F1_score=", mean(F1_result), "Val Accuracy=", mean(Acc_result)) | ||
print("Training with full dataset!") | ||
w, it, lr, not_linearly_separable, correctly_classified, w_vec, J_vec \ | ||
= init_train_param(D) | ||
w_hat = train(X_tr_prime, y_tr_prime, N, idx, w, it, lr, \ | ||
not_linearly_separable, correctly_classified, w_vec, J_vec) | ||
y_test_pred = predict(X_test, y_test, w_hat) | ||
F1_score, Accuracy = metrics(y_test, y_test_pred, "perceptron") | ||
print("Test F1_score=", F1_score, "Test Accuracy=", Accuracy) | ||
|
||
if __name__ == '__main__': | ||
main() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters