Skip to content

RyanCCC/Semantic-Segmentation-Datasets

Repository files navigation

使用labelme制作语义分割数据集(以buildings为例)

  1. 编写labels.txt,内容包括背景(background)和类别名称,多类别就写上你的类别名称。buildings的labels.txt文档内容如下:

    background

    buildings

  2. 将路径切换到要打标签的图像文件夹所在的目录下,执行命令:labelme buildings --labels labels.txt

  3. 将labelme设置成'Saved Automatically'(点击labelme软件左上角的file就有此选项),然后开始标记工作。

  4. 标记完成后保存的是json数据,路径在标记图像的目录下,接着需要将json文件转换成VOC格式。假设将转换的图像保存在buildings_VOC下。执行命令:python label2VOC.py buildings buildings_VOC --labels labels.txt。labels.txt就是你一开始编写的txt文件。

    label2VOC.py代码如下:

    #!/usr/bin/env python
    # labelme data_annotated --labels labels.txt --nodata --validatelabel exact
    # ./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt
    from __future__ import print_function
    
    import argparse
    import glob
    import os
    import os.path as osp
    import sys
    
    import imgviz
    import numpy as np
    
    import labelme
    
    
    def main():
        parser = argparse.ArgumentParser(
            formatter_class=argparse.ArgumentDefaultsHelpFormatter
        )
        parser.add_argument("input_dir", help="input annotated directory")
        parser.add_argument("output_dir", help="output dataset directory")
        parser.add_argument("--labels", help="labels file", required=True)
        parser.add_argument(
            "--noviz", help="no visualization", action="store_true"
        )
        args = parser.parse_args()
    
        if osp.exists(args.output_dir):
            print("Output directory already exists:", args.output_dir)
            sys.exit(1)
        os.makedirs(args.output_dir)
        os.makedirs(osp.join(args.output_dir, "JPEGImages"))
        os.makedirs(osp.join(args.output_dir, "SegmentationClass"))
        os.makedirs(osp.join(args.output_dir, "SegmentationClassPNG"))
        if not args.noviz:
            os.makedirs(
                osp.join(args.output_dir, "SegmentationClassVisualization")
            )
        print("Creating dataset:", args.output_dir)
    
        class_names = []
        class_name_to_id = {}
        for i, line in enumerate(open(args.labels).readlines()):
            class_id = i - 1  # starts with -1
            class_name = line.strip()
            class_name_to_id[class_name] = class_id
            if class_id == -1:
                assert class_name == "__ignore__"
                continue
            elif class_id == 0:
                assert class_name == "_background_"
            class_names.append(class_name)
        class_names = tuple(class_names)
        print("class_names:", class_names)
        out_class_names_file = osp.join(args.output_dir, "class_names.txt")
        with open(out_class_names_file, "w") as f:
            f.writelines("\n".join(class_names))
        print("Saved class_names:", out_class_names_file)
    
        for filename in glob.glob(osp.join(args.input_dir, "*.json")):
            print("Generating dataset from:", filename)
    
            label_file = labelme.LabelFile(filename=filename)
    
            base = osp.splitext(osp.basename(filename))[0]
            out_img_file = osp.join(args.output_dir, "JPEGImages", base + ".jpg")
            out_lbl_file = osp.join(
                args.output_dir, "SegmentationClass", base + ".npy"
            )
            out_png_file = osp.join(
                args.output_dir, "SegmentationClassPNG", base + ".png"
            )
            if not args.noviz:
                out_viz_file = osp.join(
                    args.output_dir,
                    "SegmentationClassVisualization",
                    base + ".jpg",
                )
    
            with open(out_img_file, "wb") as f:
                f.write(label_file.imageData)
            img = labelme.utils.img_data_to_arr(label_file.imageData)
    
            lbl, _ = labelme.utils.shapes_to_label(
                img_shape=img.shape,
                shapes=label_file.shapes,
                label_name_to_value=class_name_to_id,
            )
            labelme.utils.lblsave(out_png_file, lbl)
    
            np.save(out_lbl_file, lbl)
    
            if not args.noviz:
                viz = imgviz.label2rgb(
                    label=lbl,
                    img=imgviz.rgb2gray(img),
                    font_size=15,
                    label_names=class_names,
                    loc="rb",
                )
                imgviz.io.imsave(out_viz_file, viz)
    
    
    if __name__ == "__main__":
        main()
  5. 生成完成后的文件架构如下:JPEGImages保存的是原图。SegmentationClass保存的是npy的文件,是原图的标签,可以用于训练,如何训练.npy文件后面再研究。SegmentationClassPNG保存的是标签,是单通道的图像,以调色板格式保存的。SegmentationClassVisualization保存的是原图+标签,用于可是化打标签的结果。class_names.txt用于保存标签的类别。

  6. 到此,可以说数据标签已经完毕了。可以使用JPEGImages下的图像作为原图,SegmentationClassPNG作为标签送入网络进行训练。但是我们一般用单通道,0,1,2,3表示类别,因此我们也可以再做一次转换,将SegmentationClassPNG转换成那种全黑的图。(这里我不太会表达。)修改一下ConvertVOC2Gray.py里面的图像的路径,然后执行文件即可。ConvertVOC2Gray.py主要修改以下代码(路径以及保存路径):

    tf.flags.DEFINE_string('original_gt_folder',#读取voc格式的png图片路径
                                     r'.\buildings_VOC\SegmentationClassPNG',#default
                                     'Original ground truth annotations.')#help
    tf.flags.DEFINE_string('segmentation_format', 'png', 'Segmentation format.')
    tf.flags.DEFINE_string('output_dir',#保存路径
                                     r'.\buildings_VOC\labels',
                                     'folder to save modified ground truth annotations.')
    """Removes the color map from segmentation annotations.
    Removes the color map from the ground truth segmentation annotations and save
    the results to output_dir.
    """
    #源程序链接:https://github.com/tensorflow/models/tree/master/research/deeplab/datasets
    #该程序用于将voc格式的索引图片转换为可用于语义分割的灰度图片,因为TensorFlow版本的缘故,在原程序上做了少许改动
    #tf.__version__==1.12
    
    import glob
    import os.path
    import numpy as np
    from PIL import Image
    import tensorflow as tf
    
    #FLAGS = tf.compat.v1.flags.FLAGS
    FLAGS = tf.flags.FLAGS
    tf.flags.DEFINE_string('original_gt_folder',#读取voc格式的png图片路径
                                     r'.\cityBuilding_VOC\SegmentationClassPNG',#default
                                     'Original ground truth annotations.')#help
    tf.flags.DEFINE_string('segmentation_format', 'png', 'Segmentation format.')
    tf.flags.DEFINE_string('output_dir',#保存路径
                                     r'.\cityBuilding_VOC\labels',
                                     'folder to save modified ground truth annotations.')
    
    
    def _remove_colormap(filename):
      """Removes the color map from the annotation.
      Args:
        filename: Ground truth annotation filename.
      Returns:
        Annotation without color map.
      """
      return np.array(Image.open(filename))
    
    
    def _save_annotation(annotation, filename):
      """Saves the annotation as png file.
      Args:
        annotation: Segmentation annotation.
        filename: Output filename.
      """
      
      pil_image = Image.fromarray(annotation.astype(dtype=np.uint8))
      '''
      with tf.io.gfile.GFile(filename, mode='w') as f:
      #with open(filename, mode='w') as f:
        print(f)
        pil_image.save(f, 'PNG')
        '''
      pil_image.save(filename)
    
    
    def main(unused_argv):
      # Create the output directory if not exists.
      if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
      #if not tf.io.gfile.isdir(FLAGS.output_dir):
        #tf.io.gfile.makedirs(FLAGS.output_dir)
    
      annotations = glob.glob(os.path.join(FLAGS.original_gt_folder,
                                           '*.' + FLAGS.segmentation_format))
      for annotation in annotations:
        raw_annotation = _remove_colormap(annotation)
        filename = os.path.basename(annotation)[:-4]
        _save_annotation(raw_annotation,
                         os.path.join(
                             FLAGS.output_dir,
                             filename + '.' + FLAGS.segmentation_format))
    
    
    if __name__ == '__main__':
      #tf.compat.v1.app.run()
      tf.app.run()

    然后可以看到building_VOC下的labels文件夹有的标签图。虽然是全黑,但是通过np.unique可以看到有0,1两种类别的像素。到此我们的数据集已经制作完成了。

image-20210531115748487

  1. 参考

https://github.com/wkentaro/labelme/tree/master/examples/semantic_segmentation

https://blog.csdn.net/Winters____/article/details/105659632

制作实例分割数据集

  1. 类似语义分割数据集一样,对图像进行标注,生成json文件。要注意一点的是:不同的实例之间的标签尽可能不一样,如person的实例分为person.1,person.2,当然你也可以按照你的风格用不同的分割符,如“,”,“。”等。这样方便后续生成yaml文件。为什么要这样做?看一下第二步json_to_dataset就知道了。
"shapes": [
    {
      "label": "sign",
      "points": [
        [
          1065.8518518518517,
          535.5925925925926
        ],
        [
          954.7407407407406,
          744.8518518518518
        ],
        [
          791.7777777777776,
          1133.7407407407406
        ],
        [
          791.7777777777776,
          1174.4814814814813
        ],
        [
          1049.185185185185,
          1170.7777777777776
        ],
        [
          1389.9259259259259,
          1135.5925925925926
        ],
        [
          1389.9259259259259,
          1102.2592592592591
        ],
        [
          1119.5555555555554,
          561.5185185185185
        ],
        [
          1099.185185185185,
          531.8888888888888
        ]
      ],
      "group_id": 1,
      "shape_type": "polygon",
      "flags": {}
    },
    {
      "label": "sign.1",
      "points": [
        [
          443.62962962962956,
          1259.6666666666665
        ],
        [
          778.8148148148148,
          1567.074074074074
        ],
        [
          754.7407407407406,
          1352.2592592592591
        ],
        [
          423.25925925925924,
          1074.4814814814815
        ]
      ],
      "group_id": null,
      "shape_type": "polygon",
      "flags": {}
    },
    {
      "label": "sign",
      "points": [
        [
          2136.222222222222,
          559.6666666666666
        ],
        [
          2264.0,
          807.8148148148148
        ],
        [
          2591.7777777777774,
          793.0
        ],
        [
          2539.9259259259256,
          596.7037037037037
        ],
        [
          2338.074074074074,
          441.1481481481481
        ],
        [
          2260.296296296296,
          437.4444444444444
        ]
      ],
      "group_id": 3,
      "shape_type": "polygon",
      "flags": {}
    }
  ]
  1. 生成训练集,运行json_to_dataset文件,注意自己的路径以及实例标签的分隔符。
import json
import os
import os.path as osp
import warnings
import PIL.Image
import yaml
from labelme import utils
import base64
from glob import glob
import shutil

'''
labelme:4.5.7
args:
    dataset: 使用labelme标注完成的数据集,其中包括标注图以及json文件存放的位置
    train_dir:保存的待训练的数据集,imgs--原图   mask--掩膜  yaml--yaml存放
注意:标注的时候后面以.区分实例,如person.1, person.2,以此类推
'''
def main(dataset = "./dataset/JPEGImages", train_dir = './dataset', env_command = 'conda activate labelme', split_flag = '.'):
    # 批量处理json文件
    if env_command is not None:
        os.system(env_command)
    json_file = os.path.join(dataset, '*.json')
    for item in glob(json_file):
        os.system(f"labelme_json_to_dataset.exe {item}")

    save_path = os.path.join(dataset, '*.json')
    for json_path in glob(save_path):
        # 保存yaml文件
        json_basename = os.path.basename(json_path).split('.')[0]
        data = json.load(open(json_path))
        if data['imageData']:
            imageData = data['imageData']
        else:
            imagePath = os.path.join(os.path.dirname(json_path), data['imagePath'])
            with open(imagePath, 'rb') as f:
                imageData = f.read()
                imageData = base64.b64encode(imageData).decode('utf-8')

        label_name_to_value = {'_background_': 0}
        for shape in data['shapes']:
            label_name = shape['label']
            if label_name in label_name_to_value:
                label_value = label_name_to_value[label_name]
            else:
                label_value = len(label_name_to_value)
                label_name_to_value[label_name] = label_value
            
            # label_values must be dense
            label_values, label_names = [], []
            for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
                label_values.append(lv)
                label_names.append(ln.split(split_flag)[0])
            
            assert label_values == list(range(len(label_values)))            
            yaml_path = os.path.join(train_dir, "yaml")
            if not os.path.exists(yaml_path):
                os.mkdir(yaml_path)
            warnings.warn('info.yaml is being replaced by label_names.txt')
            info = dict(label_names=label_names)
            with open(osp.join(yaml_path, str(json_basename)+'.yaml'), 'w') as f:
                yaml.safe_dump(info, f, default_flow_style=False)
        print('Saved : %s' % str(json_basename+'.yaml'))
        # copy ori image to imgs and rename 
        src_path = os.path.join(dataset, json_basename+'_json', 'img.png')
        dst_path = os.path.join(train_dir, 'images')
        if not os.path.exists(dst_path):
            os.mkdir(dst_path)
        shutil.copy(src_path, os.path.join(dst_path, json_basename+'.png'))
        # copy mask img to mask
        src_path = os.path.join(dataset, json_basename+'_json', 'label.png')
        dst_path = os.path.join(train_dir, 'mask')
        if not os.path.exists(dst_path):
            os.mkdir(dst_path)
        shutil.copy(src_path, os.path.join(dst_path, json_basename+'.png'))
if __name__ == '__main__':
    main()
  1. 最终设定的目录下生成images、mask、yaml文件夹,分别存放原图,掩膜图,yaml文件。具体的Demo可以参照Instance_dataset_demo

About

图像分割数据集教程

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published