forked from swz30/CycleISP
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
dataloader for MIT-Adobe fivek dataset
- Loading branch information
Showing
1 changed file
with
82 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
import numpy as np | ||
import os | ||
from torch.utils.data import Dataset | ||
import torch | ||
|
||
from utils.image_utils import is_numpy_file, load_npy, pack_raw, load_dict | ||
from utils.dataset_utils import Augment_Bayer, bayer_unify | ||
|
||
augment = Augment_Bayer() | ||
transforms_aug = [method for method in dir(augment) if callable(getattr(augment, method)) if not method.startswith('_')] | ||
|
||
|
||
class DataLoaderTrain(Dataset): | ||
def __init__(self, raw_dir, rgb_dir, img_options=None): | ||
super(DataLoaderTrain, self).__init__() | ||
|
||
self.pkl_bayer_patterns = load_dict('./datasets/fivek_bayer.pkl') | ||
|
||
rgb_files=sorted(os.listdir(rgb_dir)) | ||
raw_files=sorted(os.listdir(raw_dir)) | ||
|
||
self.rgb_filenames = [os.path.join(rgb_dir, x) for x in rgb_files if is_numpy_file(x)] | ||
self.raw_filenames = [os.path.join(raw_dir, x) for x in raw_files if is_numpy_file(x)] | ||
|
||
self.img_options=img_options | ||
self.rgb_size = len(self.rgb_filenames) # get the size of input | ||
self.raw_size = len(self.raw_filenames) # get the size of target | ||
|
||
def __len__(self): | ||
return max(self.rgb_size, self.raw_size) | ||
|
||
def __getitem__(self, index): | ||
rgb_index = index % self.rgb_size | ||
raw_index = index % self.raw_size | ||
|
||
filename = os.path.splitext(os.path.split(self.rgb_filenames[rgb_index])[-1])[0] | ||
bayer_pattern = self.pkl_bayer_patterns[filename] | ||
|
||
## Load Images | ||
rgb_image = load_npy(self.rgb_filenames[rgb_index]) | ||
raw_image = load_npy(self.raw_filenames[raw_index]) | ||
|
||
|
||
#Extract random crops from rgb and raw images | ||
ps = self.img_options['patch_size'] | ||
ps_temp = ps*2 + 16 | ||
H = raw_image.shape[0] | ||
W = raw_image.shape[1] | ||
r = np.random.randint(0, H - ps_temp) | ||
c = np.random.randint(0, W - ps_temp) | ||
if r%2!=0: r = r-1 | ||
if c%2!=0: c = c-1 | ||
rgb_patch = rgb_image[r:r + ps_temp, c:c + ps_temp, :] | ||
raw_patch = raw_image[r:r + ps_temp, c:c + ps_temp, :] | ||
|
||
|
||
raw_patch, rgb_patch = bayer_unify(raw_patch.squeeze(), rgb_patch, bayer_pattern, "RGGB", "crop") | ||
|
||
#Apply Bayer Augmentation | ||
indx = np.random.randint(0,len(transforms_aug)) | ||
apply_trans = transforms_aug[indx] | ||
|
||
raw_patch, rgb_patch = getattr(augment, apply_trans)(raw_patch[...,np.newaxis], rgb_patch) | ||
|
||
#Pack Target | ||
raw_patch = pack_raw(raw_patch) | ||
|
||
# Extract crops of desired patch size | ||
H = raw_patch.shape[0] | ||
W = raw_patch.shape[1] | ||
r = (H - ps) // 2 | ||
c = (W - ps) // 2 | ||
PS, R, C = ps*2, r*2, c*2 | ||
rgb_patch = rgb_patch[R:R + PS, C:C + PS, :] | ||
raw_patch = raw_patch[r:r + ps, c:c + ps, :] | ||
|
||
rgb_patch = torch.Tensor(rgb_patch).permute(2,0,1) | ||
raw_patch = torch.Tensor(raw_patch).permute(2,0,1) | ||
|
||
return rgb_patch,raw_patch | ||
|
||
|