forked from swz30/CycleISP
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
166 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
""" | ||
## CycleISP: Real Image Restoration Via Improved Data Synthesis | ||
## Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao | ||
## CVPR 2020 | ||
## https://arxiv.org/abs/2003.07761 | ||
""" | ||
|
||
import math | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.autograd import Variable | ||
|
||
########################################################################## | ||
|
||
def conv(in_channels, out_channels, kernel_size, bias=True, padding = 1, stride = 1): | ||
return nn.Conv2d( | ||
in_channels, out_channels, kernel_size, | ||
padding=(kernel_size//2), bias=bias, stride = stride) | ||
|
||
|
||
|
||
########################################################################## | ||
|
||
## Channel Attention (CA) Layer | ||
class CALayer(nn.Module): | ||
def __init__(self, channel, reduction=16): | ||
super(CALayer, self).__init__() | ||
# global average pooling: feature --> point | ||
self.avg_pool = nn.AdaptiveAvgPool2d(1) | ||
# feature channel downscale and upscale --> channel weight | ||
self.conv_du = nn.Sequential( | ||
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True), | ||
nn.ReLU(inplace=True), | ||
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True), | ||
nn.Sigmoid() | ||
) | ||
|
||
def forward(self, x): | ||
y = self.avg_pool(x) | ||
y = self.conv_du(y) | ||
return x * y | ||
########################################################################## | ||
|
||
class BasicConv(nn.Module): | ||
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=False, bias=False): | ||
super(BasicConv, self).__init__() | ||
self.out_channels = out_planes | ||
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) | ||
self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None | ||
self.relu = nn.ReLU() if relu else None | ||
|
||
def forward(self, x): | ||
x = self.conv(x) | ||
if self.bn is not None: | ||
x = self.bn(x) | ||
if self.relu is not None: | ||
x = self.relu(x) | ||
return x | ||
|
||
class ChannelPool(nn.Module): | ||
def forward(self, x): | ||
return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 ) | ||
|
||
class spatial_attn_layer(nn.Module): | ||
def __init__(self, kernel_size=3): | ||
super(spatial_attn_layer, self).__init__() | ||
self.compress = ChannelPool() | ||
self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False) | ||
def forward(self, x): | ||
# import pdb;pdb.set_trace() | ||
x_compress = self.compress(x) | ||
x_out = self.spatial(x_compress) | ||
scale = torch.sigmoid(x_out) # broadcasting | ||
return x * scale | ||
|
||
########################################################################## | ||
|
||
|
||
## Dual Attention Block (DAB) | ||
class DAB(nn.Module): | ||
def __init__( | ||
self, conv, n_feat, kernel_size, reduction, | ||
bias=True, bn=False, act=nn.ReLU(True)): | ||
|
||
super(DAB, self).__init__() | ||
modules_body = [] | ||
for i in range(2): | ||
modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias)) | ||
if bn: modules_body.append(nn.BatchNorm2d(n_feat)) | ||
if i == 0: modules_body.append(act) | ||
|
||
self.SA = spatial_attn_layer() ## Spatial Attention | ||
self.CA = CALayer(n_feat, reduction) ## Channel Attention | ||
self.body = nn.Sequential(*modules_body) | ||
self.conv1x1 = nn.Conv2d(n_feat*2, n_feat, kernel_size=1) | ||
|
||
|
||
def forward(self, x): | ||
res = self.body(x) | ||
sa_branch = self.SA(res) | ||
ca_branch = self.CA(res) | ||
res = torch.cat([sa_branch, ca_branch], dim=1) | ||
res = self.conv1x1(res) | ||
res += x | ||
return res | ||
|
||
########################################################################## | ||
|
||
|
||
## Recursive Residual Group (RRG) | ||
class RRG(nn.Module): | ||
def __init__(self, conv, n_feat, kernel_size, reduction, act, num_dab): | ||
super(RRG, self).__init__() | ||
modules_body = [] | ||
modules_body = [ | ||
DAB( | ||
conv, n_feat, kernel_size, reduction, bias=True, bn=False, act=act) \ | ||
for _ in range(num_dab)] | ||
modules_body.append(conv(n_feat, n_feat, kernel_size)) | ||
self.body = nn.Sequential(*modules_body) | ||
|
||
def forward(self, x): | ||
res = self.body(x) | ||
res += x | ||
return res | ||
|
||
########################################################################## | ||
|
||
|
||
class DenoiseNet(nn.Module): | ||
def __init__(self, conv=conv): | ||
super(DenoiseNet, self).__init__() | ||
num_rrg = 4 | ||
num_dab = 8 | ||
n_feats = 64 | ||
kernel_size = 3 | ||
reduction = 16 | ||
inp_chans = 3 | ||
act =nn.PReLU(n_feats) | ||
|
||
modules_head = [conv(inp_chans, n_feats, kernel_size = kernel_size, stride = 1)] | ||
|
||
modules_body = [ | ||
RRG( | ||
conv, n_feats, kernel_size, reduction, act=act, num_dab=num_dab) \ | ||
for _ in range(num_rrg)] | ||
|
||
modules_body.append(conv(n_feats, n_feats, kernel_size)) | ||
modules_body.append(act) | ||
|
||
modules_tail = [conv(n_feats, inp_chans, kernel_size)] | ||
|
||
|
||
self.head = nn.Sequential(*modules_head) | ||
self.body = nn.Sequential(*modules_body) | ||
self.tail = nn.Sequential(*modules_tail) | ||
|
||
|
||
def forward(self, noisy_img): | ||
x = self.head(noisy_img) | ||
x = self.body(x) | ||
x = self.tail(x) | ||
x = noisy_img + x | ||
return x | ||
|