Skip to content

Commit

Permalink
Merge tag 'regulator-v3.17-rc3' of git://git.kernel.org/pub/scm/linux…
Browse files Browse the repository at this point in the history
…/kernel/git/broonie/regulator

Pull regulator documentation fixes from Mark Brown:
 "All the fixes people have found for the regulator API have been
  documentation fixes, avoiding warnings while building the kerneldoc,
  fixing some errors in one of the DT bindings documents and fixing some
  typos in the header"

* tag 'regulator-v3.17-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regulator:
  regulator: fix kernel-doc warnings in header files
  regulator: Proofread documentation
  regulator: tps65090: Fix tps65090 typos in example
  • Loading branch information
torvalds committed Sep 5, 2014
2 parents 5e6c723 + a65c866 commit 8e6353b
Show file tree
Hide file tree
Showing 8 changed files with 21 additions and 17 deletions.
4 changes: 2 additions & 2 deletions Documentation/devicetree/bindings/regulator/tps65090.txt
Original file line number Diff line number Diff line change
Expand Up @@ -45,8 +45,8 @@ Example:
infet5-supply = <&some_reg>;
infet6-supply = <&some_reg>;
infet7-supply = <&some_reg>;
vsys_l1-supply = <&some_reg>;
vsys_l2-supply = <&some_reg>;
vsys-l1-supply = <&some_reg>;
vsys-l2-supply = <&some_reg>;

regulators {
dcdc1 {
Expand Down
7 changes: 4 additions & 3 deletions Documentation/power/regulator/consumer.txt
Original file line number Diff line number Diff line change
Expand Up @@ -143,8 +143,9 @@ This will cause the core to recalculate the total load on the regulator (based
on all its consumers) and change operating mode (if necessary and permitted)
to best match the current operating load.

The load_uA value can be determined from the consumers datasheet. e.g.most
datasheets have tables showing the max current consumed in certain situations.
The load_uA value can be determined from the consumer's datasheet. e.g. most
datasheets have tables showing the maximum current consumed in certain
situations.

Most consumers will use indirect operating mode control since they have no
knowledge of the regulator or whether the regulator is shared with other
Expand Down Expand Up @@ -173,7 +174,7 @@ Consumers can register interest in regulator events by calling :-
int regulator_register_notifier(struct regulator *regulator,
struct notifier_block *nb);

Consumers can uregister interest by calling :-
Consumers can unregister interest by calling :-

int regulator_unregister_notifier(struct regulator *regulator,
struct notifier_block *nb);
Expand Down
8 changes: 4 additions & 4 deletions Documentation/power/regulator/design.txt
Original file line number Diff line number Diff line change
Expand Up @@ -9,14 +9,14 @@ Safety

- Errors in regulator configuration can have very serious consequences
for the system, potentially including lasting hardware damage.
- It is not possible to automatically determine the power confugration
- It is not possible to automatically determine the power configuration
of the system - software-equivalent variants of the same chip may
have different power requirments, and not all components with power
have different power requirements, and not all components with power
requirements are visible to software.

=> The API should make no changes to the hardware state unless it has
specific knowledge that these changes are safe to do perform on
this particular system.
specific knowledge that these changes are safe to perform on this
particular system.

Consumer use cases
------------------
Expand Down
4 changes: 2 additions & 2 deletions Documentation/power/regulator/machine.txt
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ Consider the following machine :-
+-> [Consumer B @ 3.3V]

The drivers for consumers A & B must be mapped to the correct regulator in
order to control their power supply. This mapping can be achieved in machine
order to control their power supplies. This mapping can be achieved in machine
initialisation code by creating a struct regulator_consumer_supply for
each regulator.

Expand Down Expand Up @@ -39,7 +39,7 @@ to the 'Vcc' supply for Consumer A.

Constraints can now be registered by defining a struct regulator_init_data
for each regulator power domain. This structure also maps the consumers
to their supply regulator :-
to their supply regulators :-

static struct regulator_init_data regulator1_data = {
.constraints = {
Expand Down
6 changes: 3 additions & 3 deletions Documentation/power/regulator/overview.txt
Original file line number Diff line number Diff line change
Expand Up @@ -36,11 +36,11 @@ Some terms used in this document:-
Consumers can be classified into two types:-

Static: consumer does not change its supply voltage or
current limit. It only needs to enable or disable it's
current limit. It only needs to enable or disable its
power supply. Its supply voltage is set by the hardware,
bootloader, firmware or kernel board initialisation code.

Dynamic: consumer needs to change it's supply voltage or
Dynamic: consumer needs to change its supply voltage or
current limit to meet operation demands.


Expand Down Expand Up @@ -156,7 +156,7 @@ relevant to non SoC devices and is split into the following four interfaces:-
This interface is for machine specific code and allows the creation of
voltage/current domains (with constraints) for each regulator. It can
provide regulator constraints that will prevent device damage through
overvoltage or over current caused by buggy client drivers. It also
overvoltage or overcurrent caused by buggy client drivers. It also
allows the creation of a regulator tree whereby some regulators are
supplied by others (similar to a clock tree).

Expand Down
6 changes: 3 additions & 3 deletions Documentation/power/regulator/regulator.txt
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ Drivers can register a regulator by calling :-
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
const struct regulator_config *config);

This will register the regulators capabilities and operations to the regulator
This will register the regulator's capabilities and operations to the regulator
core.

Regulators can be unregistered by calling :-
Expand All @@ -23,8 +23,8 @@ void regulator_unregister(struct regulator_dev *rdev);

Regulator Events
================
Regulators can send events (e.g. over temp, under voltage, etc) to consumer
drivers by calling :-
Regulators can send events (e.g. overtemperature, undervoltage, etc) to
consumer drivers by calling :-

int regulator_notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data);
2 changes: 2 additions & 0 deletions include/linux/regulator/driver.h
Original file line number Diff line number Diff line change
Expand Up @@ -218,6 +218,8 @@ enum regulator_type {
* @linear_min_sel: Minimal selector for starting linear mapping
* @fixed_uV: Fixed voltage of rails.
* @ramp_delay: Time to settle down after voltage change (unit: uV/us)
* @linear_ranges: A constant table of possible voltage ranges.
* @n_linear_ranges: Number of entries in the @linear_ranges table.
* @volt_table: Voltage mapping table (if table based mapping)
*
* @vsel_reg: Register for selector when using regulator_regmap_X_voltage_
Expand Down
1 change: 1 addition & 0 deletions include/linux/regulator/machine.h
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,7 @@ struct regulator_state {
* bootloader then it will be enabled when the constraints are
* applied.
* @apply_uV: Apply the voltage constraint when initialising.
* @ramp_disable: Disable ramp delay when initialising or when setting voltage.
*
* @input_uV: Input voltage for regulator when supplied by another regulator.
*
Expand Down

0 comments on commit 8e6353b

Please sign in to comment.