Skip to content

Commit

Permalink
Go: Update generated wrapper functions for TensorFlow ops.
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 199351707
  • Loading branch information
tensorflower-gardener committed Jun 5, 2018
1 parent 92ceec1 commit c03d2c4
Showing 1 changed file with 60 additions and 60 deletions.
120 changes: 60 additions & 60 deletions tensorflow/go/op/wrappers.go
Original file line number Diff line number Diff line change
Expand Up @@ -21947,46 +21947,6 @@ func MatrixExponential(scope *Scope, input tf.Output) (output tf.Output) {
return op.Output(0)
}

// Computes the matrix logarithm of one or more square matrices:
//
//
// log(exp(A)) = A
//
// This op is only defined for complex matrices. If A is positive-definite and
// real, then casting to a complex matrix, taking the logarithm and casting back
// to a real matrix will give the correct result.
//
// This function computes the matrix logarithm using the Schur-Parlett algorithm.
// Details of the algorithm can be found in Section 11.6.2 of:
// Nicholas J. Higham, Functions of Matrices: Theory and Computation, SIAM 2008.
// ISBN 978-0-898716-46-7.
//
// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions
// form square matrices. The output is a tensor of the same shape as the input
// containing the exponential for all input submatrices `[..., :, :]`.
//
// Arguments:
// input: Shape is `[..., M, M]`.
//
// Returns Shape is `[..., M, M]`.
//
// @compatibility(scipy)
// Equivalent to scipy.linalg.logm
// @end_compatibility
func MatrixLogarithm(scope *Scope, input tf.Output) (output tf.Output) {
if scope.Err() != nil {
return
}
opspec := tf.OpSpec{
Type: "MatrixLogarithm",
Input: []tf.Input{
input,
},
}
op := scope.AddOperation(opspec)
return op.Output(0)
}

// QueueDequeueUpToV2Attr is an optional argument to QueueDequeueUpToV2.
type QueueDequeueUpToV2Attr func(optionalAttr)

Expand Down Expand Up @@ -24398,6 +24358,46 @@ func NonMaxSuppressionV2(scope *Scope, boxes tf.Output, scores tf.Output, max_ou
return op.Output(0)
}

// Computes the matrix logarithm of one or more square matrices:
//
//
// log(exp(A)) = A
//
// This op is only defined for complex matrices. If A is positive-definite and
// real, then casting to a complex matrix, taking the logarithm and casting back
// to a real matrix will give the correct result.
//
// This function computes the matrix logarithm using the Schur-Parlett algorithm.
// Details of the algorithm can be found in Section 11.6.2 of:
// Nicholas J. Higham, Functions of Matrices: Theory and Computation, SIAM 2008.
// ISBN 978-0-898716-46-7.
//
// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions
// form square matrices. The output is a tensor of the same shape as the input
// containing the exponential for all input submatrices `[..., :, :]`.
//
// Arguments:
// input: Shape is `[..., M, M]`.
//
// Returns Shape is `[..., M, M]`.
//
// @compatibility(scipy)
// Equivalent to scipy.linalg.logm
// @end_compatibility
func MatrixLogarithm(scope *Scope, input tf.Output) (output tf.Output) {
if scope.Err() != nil {
return
}
opspec := tf.OpSpec{
Type: "MatrixLogarithm",
Input: []tf.Input{
input,
},
}
op := scope.AddOperation(opspec)
return op.Output(0)
}

// EncodeProtoAttr is an optional argument to EncodeProto.
type EncodeProtoAttr func(optionalAttr)

Expand Down Expand Up @@ -29425,6 +29425,26 @@ func Snapshot(scope *Scope, input tf.Output) (output tf.Output) {
return op.Output(0)
}

// Returns a tensor of zeros with the same shape and type as x.
//
// Arguments:
// x: a tensor of type T.
//
// Returns a tensor of the same shape and type as x but filled with zeros.
func ZerosLike(scope *Scope, x tf.Output) (y tf.Output) {
if scope.Err() != nil {
return
}
opspec := tf.OpSpec{
Type: "ZerosLike",
Input: []tf.Input{
x,
},
}
op := scope.AddOperation(opspec)
return op.Output(0)
}

// AbortAttr is an optional argument to Abort.
type AbortAttr func(optionalAttr)

Expand Down Expand Up @@ -30690,23 +30710,3 @@ func GuaranteeConst(scope *Scope, input tf.Output) (output tf.Output) {
op := scope.AddOperation(opspec)
return op.Output(0)
}

// Returns a tensor of zeros with the same shape and type as x.
//
// Arguments:
// x: a tensor of type T.
//
// Returns a tensor of the same shape and type as x but filled with zeros.
func ZerosLike(scope *Scope, x tf.Output) (y tf.Output) {
if scope.Err() != nil {
return
}
opspec := tf.OpSpec{
Type: "ZerosLike",
Input: []tf.Input{
x,
},
}
op := scope.AddOperation(opspec)
return op.Output(0)
}

0 comments on commit c03d2c4

Please sign in to comment.