Skip to content

Personalized prioritization of driver genes in cancer

Notifications You must be signed in to change notification settings

Shamir-Lab/PRODIGY

Folders and files

NameName
Last commit message
Last commit date

Latest commit

d4165a3 · Mar 14, 2022

History

54 Commits
Mar 14, 2022
Feb 20, 2019
Dec 13, 2018
Mar 4, 2022
Oct 14, 2020
Dec 12, 2018
Oct 14, 2020
Mar 4, 2022
Mar 4, 2022
Oct 14, 2020
Mar 4, 2022
Dec 13, 2018

Repository files navigation

PRODIGY

This R package prioritize driver genes for individual cancer patients.

The details of the method are described in Dinstag G. & Shamir R. PRODIGY: personalized prioritization of driver genes. Bioinformatics (2019), https://academic.oup.com/bioinformatics/article/36/6/1831/5612092

Package installation

library(devtools)
install_github("Shamir-Lab/PRODIGY")

PRODIGY was developed using and is dependent on the following packages (minimal version required is specified):

  • MASS_7.3-50
  • DESeq2_1.16.1
  • igraph_1.2.2
  • graphite_1.22
  • ff_2.2-14
  • plyr_1.8.4
  • biomaRt_2.32.1
  • PCSF_0.99.1
  • mixtools_1.1.0
  • ggplot2_3.0.0
  • cowplot_0.9.3

Simple run example

library(PRODIGY)
# Load SNP+expression data derived from TCGA
data(COAD_SNV)
data(COAD_Expression)
# Load STRING network data 
data(STRING_network)
network = STRING_network
# Take samples for which SNP and expression is available 
samples = intersect(colnames(expression_matrix),colnames(snv_matrix))[1:5]
# Get differentially expressed genes (DEGs) for all samples
expression_matrix = expression_matrix[which(rownames(expression_matrix) %in% unique(c(network[,1],network[,2]))),]
DEGs = get_DEGs(expression_matrix,samples,sample_origins=NULL,beta=2,gamma=0.05)
# Identify sample origins (tumor or normal)
sample_origins = rep("tumor",ncol(expression_matrix))
sample_origins[substr(colnames(expression_matrix),nchar(colnames(expression_matrix)[1])-1,nchar(colnames(expression_matrix)[1]))=="11"] = "normal"	
list_of_pathways = get_pathway_list_from_graphite(source = "reactome",minimal_number_of_nodes = 10,num_of_cores = 20)
# Run PRODIGY
all_patients_scores = PRODIGY_cohort(snv_matrix = snv_matrix,expression_matrix = expression_matrix,network=network,samples=samples,DEGs=DEGs,alpha=0.05,
 			pathway_list=list_of_pathways,num_of_cores=30,sample_origins=sample_origins,write_results = F, results_folder = "./",
 			beta=2,gamma=0.05,delta=0.05)
# Get driver gene rankings for all samples 
results = analyze_PRODIGY_results(all_patients_scores) 

About

Personalized prioritization of driver genes in cancer

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages