forked from PythonOT/POT
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
141 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
"""Tests for module partial """ | ||
|
||
# Author: | ||
# Laetitia Chapel <[email protected]> | ||
# | ||
# License: MIT License | ||
|
||
import numpy as np | ||
import scipy as sp | ||
import ot | ||
|
||
|
||
def test_partial_wasserstein(): | ||
|
||
n_samples = 20 # nb samples (gaussian) | ||
n_noise = 20 # nb of samples (noise) | ||
|
||
mu = np.array([0, 0]) | ||
cov = np.array([[1, 0], [0, 2]]) | ||
|
||
xs = ot.datasets.make_2D_samples_gauss(n_samples, mu, cov) | ||
xs = np.append(xs, (np.random.rand(n_noise, 2) + 1) * 4).reshape((-1, 2)) | ||
xt = ot.datasets.make_2D_samples_gauss(n_samples, mu, cov) | ||
xt = np.append(xt, (np.random.rand(n_noise, 2) + 1) * -3).reshape((-1, 2)) | ||
|
||
M = ot.dist(xs, xt) | ||
|
||
p = ot.unif(n_samples + n_noise) | ||
q = ot.unif(n_samples + n_noise) | ||
|
||
m = 0.5 | ||
|
||
w0, log0 = ot.partial.partial_wasserstein(p, q, M, m=m, log=True) | ||
w, log = ot.partial.entropic_partial_wasserstein(p, q, M, reg=1, m=m, | ||
log=True) | ||
|
||
# check constratints | ||
np.testing.assert_equal( | ||
w0.sum(1) - p <= 1e-5, [True] * len(p)) # cf convergence wasserstein | ||
np.testing.assert_equal( | ||
w0.sum(0) - q <= 1e-5, [True] * len(q)) # cf convergence wasserstein | ||
np.testing.assert_equal( | ||
w.sum(1) - p <= 1e-5, [True] * len(p)) # cf convergence wasserstein | ||
np.testing.assert_equal( | ||
w.sum(0) - q <= 1e-5, [True] * len(q)) # cf convergence wasserstein | ||
|
||
# check transported mass | ||
np.testing.assert_allclose( | ||
np.sum(w0), m, atol=1e-04) | ||
np.testing.assert_allclose( | ||
np.sum(w), m, atol=1e-04) | ||
|
||
w0, log0 = ot.partial.partial_wasserstein2(p, q, M, m=m, log=True) | ||
w0_val = ot.partial.partial_wasserstein2(p, q, M, m=m, log=False) | ||
|
||
G = log0['T'] | ||
|
||
np.testing.assert_allclose(w0, w0_val, atol=1e-1, rtol=1e-1) | ||
|
||
# check constratints | ||
np.testing.assert_equal( | ||
G.sum(1) <= p, [True] * len(p)) # cf convergence wasserstein | ||
np.testing.assert_equal( | ||
G.sum(0) <= q, [True] * len(q)) # cf convergence wasserstein | ||
np.testing.assert_allclose( | ||
np.sum(G), m, atol=1e-04) | ||
|
||
|
||
def test_partial_gromov_wasserstein(): | ||
n_samples = 20 # nb samples | ||
n_noise = 10 # nb of samples (noise) | ||
|
||
p = ot.unif(n_samples + n_noise) | ||
q = ot.unif(n_samples + n_noise) | ||
|
||
mu_s = np.array([0, 0]) | ||
cov_s = np.array([[1, 0], [0, 1]]) | ||
|
||
mu_t = np.array([0, 0, 0]) | ||
cov_t = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) | ||
|
||
xs = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s) | ||
xs = np.concatenate((xs, ((np.random.rand(n_noise, 2) + 1) * 4)), axis=0) | ||
P = sp.linalg.sqrtm(cov_t) | ||
xt = np.random.randn(n_samples, 3).dot(P) + mu_t | ||
xt = np.concatenate((xt, ((np.random.rand(n_noise, 3) + 1) * 10)), axis=0) | ||
xt2 = xs[::-1].copy() | ||
|
||
C1 = ot.dist(xs, xs) | ||
C2 = ot.dist(xt, xt) | ||
C3 = ot.dist(xt2, xt2) | ||
|
||
m = 2 / 3 | ||
res0, log0 = ot.partial.partial_gromov_wasserstein(C1, C3, p, q, m=m, | ||
log=True) | ||
res, log = ot.partial.entropic_partial_gromov_wasserstein(C1, C3, p, q, 10, | ||
m=m, log=True) | ||
np.testing.assert_allclose(res0, 0, atol=1e-1, rtol=1e-1) | ||
np.testing.assert_allclose(res, 0, atol=1e-1, rtol=1e-1) | ||
|
||
C1 = sp.spatial.distance.cdist(xs, xs) | ||
C2 = sp.spatial.distance.cdist(xt, xt) | ||
|
||
m = 1 | ||
res0, log0 = ot.partial.partial_gromov_wasserstein(C1, C2, p, q, m=m, | ||
log=True) | ||
G = ot.gromov.gromov_wasserstein(C1, C2, p, q, 'square_loss') | ||
np.testing.assert_allclose(G, res0, atol=1e-04) | ||
|
||
res, log = ot.partial.entropic_partial_gromov_wasserstein(C1, C2, p, q, 10, | ||
m=m, log=True) | ||
G = ot.gromov.entropic_gromov_wasserstein( | ||
C1, C2, p, q, 'square_loss', epsilon=10) | ||
np.testing.assert_allclose(G, res, atol=1e-02) | ||
|
||
w0, log0 = ot.partial.partial_gromov_wasserstein2(C1, C2, p, q, m=m, | ||
log=True) | ||
w0_val = ot.partial.partial_gromov_wasserstein2(C1, C2, p, q, m=m, | ||
log=False) | ||
G = log0['T'] | ||
np.testing.assert_allclose(w0, w0_val, atol=1e-1, rtol=1e-1) | ||
|
||
m = 2 / 3 | ||
res0, log0 = ot.partial.partial_gromov_wasserstein(C1, C2, p, q, m=m, | ||
log=True) | ||
res, log = ot.partial.entropic_partial_gromov_wasserstein(C1, C2, p, q, 10, | ||
m=m, log=True) | ||
# check constratints | ||
np.testing.assert_equal( | ||
res0.sum(1) <= p, [True] * len(p)) # cf convergence wasserstein | ||
np.testing.assert_equal( | ||
res0.sum(0) <= q, [True] * len(q)) # cf convergence wasserstein | ||
np.testing.assert_allclose( | ||
np.sum(res0), m, atol=1e-04) | ||
|
||
np.testing.assert_equal( | ||
res.sum(1) <= p, [True] * len(p)) # cf convergence wasserstein | ||
np.testing.assert_equal( | ||
res.sum(0) <= q, [True] * len(q)) # cf convergence wasserstein | ||
np.testing.assert_allclose( | ||
np.sum(res), m, atol=1e-04) |