-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
39ba4f7
commit 2da4a50
Showing
41 changed files
with
236,655 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .scared_dataset import SCAREDRAWDataset |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
from __future__ import absolute_import, division, print_function | ||
|
||
import os | ||
import random | ||
import numpy as np | ||
import copy | ||
from PIL import Image # using pillow-simd for increased speed | ||
from PIL import ImageFile | ||
|
||
import torch | ||
import torch.utils.data as data | ||
from torchvision import transforms | ||
|
||
ImageFile.LOAD_TRUNCATED_IMAGES=True | ||
|
||
def pil_loader(path): | ||
# open path as file to avoid ResourceWarning | ||
# (https://github.com/python-pillow/Pillow/issues/835) | ||
with open(path, 'rb') as f: | ||
with Image.open(f) as img: | ||
return img.convert('RGB') | ||
|
||
|
||
class MonoDataset(data.Dataset): | ||
"""Superclass for monocular dataloaders | ||
Args: | ||
data_path | ||
filenames | ||
height | ||
width | ||
frame_idxs | ||
num_scales | ||
is_train | ||
img_ext | ||
""" | ||
def __init__(self, | ||
data_path, | ||
filenames, | ||
height, | ||
width, | ||
frame_idxs, | ||
num_scales, | ||
is_train=False, | ||
img_ext='.png'): | ||
super(MonoDataset, self).__init__() | ||
|
||
self.data_path = data_path | ||
self.filenames = filenames | ||
self.height = height | ||
self.width = width | ||
self.num_scales = num_scales | ||
self.interp = Image.ANTIALIAS | ||
|
||
self.frame_idxs = frame_idxs | ||
|
||
self.is_train = is_train | ||
self.img_ext = img_ext | ||
|
||
self.loader = pil_loader | ||
self.to_tensor = transforms.ToTensor() | ||
|
||
# We need to specify augmentations differently in newer versions of torchvision. | ||
# We first try the newer tuple version; if this fails we fall back to scalars | ||
try: | ||
self.brightness = (0.8, 1.2) | ||
self.contrast = (0.8, 1.2) | ||
self.saturation = (0.8, 1.2) | ||
self.hue = (-0.1, 0.1) | ||
transforms.ColorJitter.get_params( | ||
self.brightness, self.contrast, self.saturation, self.hue) | ||
except TypeError: | ||
self.brightness = 0.2 | ||
self.contrast = 0.2 | ||
self.saturation = 0.2 | ||
self.hue = 0.1 | ||
|
||
self.resize = {} | ||
for i in range(self.num_scales): | ||
s = 2 ** i | ||
self.resize[i] = transforms.Resize((self.height // s, self.width // s), | ||
interpolation=self.interp) | ||
self.load_depth = self.check_depth() | ||
|
||
def preprocess(self, inputs, color_aug): | ||
"""Resize colour images to the required scales and augment if required | ||
We create the color_aug object in advance and apply the same augmentation to all | ||
images in this item. This ensures that all images input to the pose network receive the | ||
same augmentation. | ||
""" | ||
for k in list(inputs): | ||
frame = inputs[k] | ||
if "color" in k: | ||
n, im, i = k | ||
for i in range(self.num_scales): | ||
inputs[(n, im, i)] = self.resize[i](inputs[(n, im, i - 1)]) | ||
|
||
for k in list(inputs): | ||
f = inputs[k] | ||
if "color" in k: | ||
n, im, i = k | ||
inputs[(n, im, i)] = self.to_tensor(f) | ||
inputs[(n + "_aug", im, i)] = self.to_tensor(color_aug(f)) | ||
|
||
def __len__(self): | ||
return len(self.filenames) | ||
|
||
def __getitem__(self, index): | ||
"""Returns a single training item from the dataset as a dictionary. | ||
Values correspond to torch tensors. | ||
Keys in the dictionary are either strings or tuples: | ||
("color", <frame_id>, <scale>) for raw colour images, | ||
("color_aug", <frame_id>, <scale>) for augmented colour images, | ||
("K", scale) or ("inv_K", scale) for camera intrinsics, | ||
"stereo_T" for camera extrinsics, and | ||
"depth_gt" for ground truth depth maps. | ||
<frame_id> is either: | ||
an integer (e.g. 0, -1, or 1) representing the temporal step relative to 'index', | ||
or | ||
"s" for the opposite image in the stereo pair. | ||
<scale> is an integer representing the scale of the image relative to the fullsize image: | ||
-1 images at native resolution as loaded from disk | ||
0 images resized to (self.width, self.height ) | ||
1 images resized to (self.width // 2, self.height // 2) | ||
2 images resized to (self.width // 4, self.height // 4) | ||
3 images resized to (self.width // 8, self.height // 8) | ||
""" | ||
inputs = {} | ||
|
||
do_color_aug = self.is_train and random.random() > 0.5 | ||
do_flip = self.is_train and random.random() > 0.5 | ||
|
||
line = self.filenames[index].split() | ||
folder = line[0] | ||
|
||
if len(line) == 3: | ||
frame_index = int(line[1]) | ||
else: | ||
frame_index = 0 | ||
|
||
if len(line) == 3: | ||
side = line[2] | ||
else: | ||
side = None | ||
|
||
for i in self.frame_idxs: | ||
if i == "s": | ||
other_side = {"r": "l", "l": "r"}[side] | ||
inputs[("color", i, -1)] = self.get_color(folder, frame_index, other_side, do_flip) | ||
else: | ||
inputs[("color", i, -1)] = self.get_color(folder, frame_index + i, side, do_flip) | ||
|
||
# adjusting intrinsics to match each scale in the pyramid | ||
for scale in range(self.num_scales): | ||
K = self.K.copy() | ||
K[0, :] *= self.width // (2 ** scale) | ||
K[1, :] *= self.height // (2 ** scale) | ||
|
||
|
||
inv_K = np.linalg.pinv(K) | ||
|
||
inputs[("K", scale)] = torch.from_numpy(K) | ||
inputs[("inv_K", scale)] = torch.from_numpy(inv_K) | ||
|
||
if do_color_aug: | ||
color_aug = transforms.ColorJitter.get_params( | ||
self.brightness, self.contrast, self.saturation, self.hue) | ||
else: | ||
color_aug = (lambda x: x) | ||
|
||
self.preprocess(inputs, color_aug) | ||
for i in self.frame_idxs: | ||
del inputs[("color", i, -1)] | ||
del inputs[("color_aug", i, -1)] | ||
|
||
if self.load_depth: | ||
depth_gt = self.get_depth(folder, frame_index, side, do_flip) | ||
inputs["depth_gt"] = np.expand_dims(depth_gt, 0) | ||
inputs["depth_gt"] = torch.from_numpy(inputs["depth_gt"].astype(np.float32)) | ||
|
||
if "s" in self.frame_idxs: | ||
stereo_T = np.eye(4, dtype=np.float32) | ||
baseline_sign = -1 if do_flip else 1 | ||
side_sign = -1 if side == "l" else 1 | ||
stereo_T[0, 3] = side_sign * baseline_sign * 0.1 | ||
|
||
inputs["stereo_T"] = torch.from_numpy(stereo_T) | ||
return inputs | ||
|
||
def get_color(self, folder, frame_index, side, do_flip): | ||
raise NotImplementedError | ||
|
||
def check_depth(self): | ||
raise NotImplementedError | ||
|
||
def get_depth(self, folder, frame_index, side, do_flip): | ||
raise NotImplementedError |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
from __future__ import absolute_import, division, print_function | ||
|
||
import os | ||
import skimage.transform | ||
import numpy as np | ||
import PIL.Image as pil | ||
import cv2 | ||
|
||
from .mono_dataset import MonoDataset | ||
|
||
|
||
class SCAREDDataset(MonoDataset): | ||
def __init__(self, *args, **kwargs): | ||
super(SCAREDDataset, self).__init__(*args, **kwargs) | ||
|
||
self.K = np.array([[0.82, 0, 0.5, 0], | ||
[0, 1.02, 0.5, 0], | ||
[0, 0, 1, 0], | ||
[0, 0, 0, 1]], dtype=np.float32) | ||
|
||
# self.full_res_shape = (1280, 1024) | ||
self.side_map = {"2": 2, "3": 3, "l": 2, "r": 3} | ||
|
||
def check_depth(self): | ||
|
||
return False | ||
|
||
def get_color(self, folder, frame_index, side, do_flip): | ||
color = self.loader(self.get_image_path(folder, frame_index, side)) | ||
|
||
if do_flip: | ||
color = color.transpose(pil.FLIP_LEFT_RIGHT) | ||
|
||
return color | ||
|
||
|
||
class SCAREDRAWDataset(SCAREDDataset): | ||
def __init__(self, *args, **kwargs): | ||
super(SCAREDRAWDataset, self).__init__(*args, **kwargs) | ||
|
||
def get_image_path(self, folder, frame_index, side): | ||
f_str = "{:010d}{}".format(frame_index, self.img_ext) | ||
image_path = os.path.join( | ||
self.data_path, folder, "image_0{}/data".format(self.side_map[side]), f_str) | ||
|
||
return image_path | ||
|
||
def get_depth(self, folder, frame_index, side, do_flip): | ||
f_str = "scene_points{:06d}.tiff".format(frame_index-1) | ||
|
||
depth_path = os.path.join( | ||
self.data_path, | ||
folder, | ||
"image_0{}/data/groundtruth".format(self.side_map[side]), | ||
f_str) | ||
|
||
depth_gt = cv2.imread(depth_path, 3) | ||
depth_gt = depth_gt[:, :, 0] | ||
depth_gt = depth_gt[0:1024, :] | ||
if do_flip: | ||
depth_gt = np.fliplr(depth_gt) | ||
|
||
return depth_gt | ||
|
||
|
Oops, something went wrong.