-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add task conversion for FLAIR images in WMH challenge dataset. (#84)
* add WMH task conversion prototype. Not tested. * Fix small mistake. The task conversion now runs. * Black formatting * Lint with flake8
- Loading branch information
Showing
1 changed file
with
81 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
import shutil | ||
import gzip | ||
from batchgenerators.utilities.file_and_folder_operations import join, maybe_mkdir_p, subfolders | ||
from yucca.task_conversion.utils import generate_dataset_json | ||
from yucca.paths import yucca_raw_data | ||
|
||
|
||
def convert(path: str, subdir: str = "WMH"): | ||
"""INPUT DATA - Define input path and suffixes""" | ||
path = join(path, subdir) | ||
|
||
""" OUTPUT DATA - Define the task name and prefix """ | ||
task_name = "Task006_WMH_Flair" | ||
task_prefix = "WMH_F" | ||
|
||
datasets = ["Amsterdam", "Singapore", "Utrecht"] | ||
site = "" | ||
|
||
# Target paths | ||
target_base = join(yucca_raw_data, task_name) | ||
|
||
target_imagesTr = join(target_base, "imagesTr") | ||
target_labelsTr = join(target_base, "labelsTr") | ||
|
||
target_imagesTs = join(target_base, "imagesTs") | ||
target_labelsTs = join(target_base, "labelsTs") | ||
|
||
maybe_mkdir_p(target_imagesTr) | ||
maybe_mkdir_p(target_labelsTs) | ||
maybe_mkdir_p(target_imagesTs) | ||
maybe_mkdir_p(target_labelsTr) | ||
|
||
###Populate Target Directory### | ||
for dataset in datasets: | ||
dataset_path = join(path, dataset) | ||
if dataset == "Amsterdam": | ||
tr_folder = "Train_GE3T" | ||
else: | ||
tr_folder = "Train" | ||
|
||
train_folder = join(dataset_path, tr_folder) | ||
test_folder = join(dataset_path, "Test") | ||
|
||
training_samples = subfolders(train_folder, join=False) | ||
test_samples = subfolders(test_folder, join=False) | ||
|
||
# First we sort the training data | ||
for sTr in training_samples: | ||
# Loading relevant modalities and the ground truth | ||
image_file = open(join(train_folder, sTr, "pre", "FLAIR.nii.gz"), "rb") | ||
label = open(join(train_folder, sTr, "pre", "wmh.nii.gz"), "rb") | ||
shutil.copyfileobj(image_file, gzip.open(f"{target_imagesTr}/{task_prefix}_{sTr}_000.nii.gz", "wb")) | ||
shutil.copyfileobj(label, gzip.open(f"{target_labelsTr}/{task_prefix}_{sTr}.nii.gz", "wb")) | ||
|
||
# Now we sort the test data | ||
if dataset == "Amsterdam": | ||
for site in test_samples: | ||
samples = subfolders(join(test_folder, site), join=False) | ||
for sTs in samples: | ||
image_file = open(join(test_folder, site, sTs, "pre", "FLAIR.nii.gz"), "rb") | ||
label = open(join(test_folder, site, sTs, "pre", "wmh.nii.gz"), "rb") | ||
shutil.copyfileobj(image_file, gzip.open(f"{target_imagesTs}/{task_prefix}_{sTs}_000.nii.gz", "wb")) | ||
shutil.copyfileobj(label, gzip.open(f"{target_labelsTs}/{task_prefix}_{sTs}.nii.gz", "wb")) | ||
else: | ||
for sTs in test_samples: | ||
image_file = open(join(test_folder, sTs, "pre", "FLAIR.nii.gz"), "rb") | ||
label = open(join(test_folder, sTs, "pre", "wmh.nii.gz"), "rb") | ||
shutil.copyfileobj(image_file, gzip.open(f"{target_imagesTs}/{task_prefix}_{sTs}_000.nii.gz", "wb")) | ||
shutil.copyfileobj(label, gzip.open(f"{target_labelsTs}/{task_prefix}_{sTs}.nii.gz", "wb")) | ||
|
||
generate_dataset_json( | ||
join(target_base, "dataset.json"), | ||
target_imagesTr, | ||
target_imagesTs, | ||
("Flair"), | ||
labels={0: "background", 1: "WMH", 2: "Other Pathology"}, | ||
dataset_name=task_name, | ||
license="CC BY-NC 4.0 DEED", | ||
dataset_description="White Matter Hyperintensity Segmentation Challenge. Flair images only!", | ||
dataset_reference="https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/AECRSD", | ||
) |