Compose Multiplatform mobile application
Note Compose Multiplatform for iOS is in Alpha. It may change incompatibly and require manual migration in the future. We would appreciate your feedback on it in the public Slack channel #compose-ios. If you face any issues, please report them on GitHub.
You can use this template to start developing your own Compose Multiplatform mobile application targeting Android and iOS. Follow our tutorial below to get your first Compose Multiplatform app up and running. The result will be a Kotlin Multiplatform project that uses Compose Multiplatform UI framework.
If you want to create an application targeting desktop platforms – Windows, macOS, and Linux, use the Compose Multiplatform for Desktop template.
Warning You need a Mac with macOS to write and run iOS-specific code on simulated or real devices. This is an Apple requirement.
To work with this template, you need the following:
- A machine running a recent version of macOS
- Xcode
- Android Studio
- Kotlin Multiplatform Mobile plugin
- CocoaPods dependency manager
Before you start, use the KDoctor tool to ensure that your development environment is configured correctly:
-
Install KDoctor with Homebrew:
brew install kdoctor
-
Run KDoctor in your terminal:
kdoctor
If everything is set up correctly, you'll see a valid output:
Environment diagnose (to see all details, use -v option): [✓] Operation System [✓] Java [✓] Android Studio [✓] Xcode [✓] Cocoapods Conclusion: ✓ Your system is ready for Kotlin Multiplatform Mobile Development!
Otherwise, KDoctor will highlight which parts of your setup still need configuration and suggest how to fix them.
Open the project in Android Studio and switch the view from Android to Project to see all the files and targets belonging to the project:
Your Compose Multiplatform project includes three modules:
This is a Kotlin module that contains the logic common for both Android and iOS applications, the code you share between platforms.
This shared
module is also where you write your Compose Multiplatform code.
In shared/src/commonMain/kotlin/App.kt
, you can find the shared root @Composable
function for your app.
It uses Gradle as the build system. You can add dependencies and change settings in shared/build.gradle.kts
.
The shared
module builds into an Android library and an iOS framework.
This is a Kotlin module that builds into an Android application. It uses Gradle as the build system.
The androidApp
module depends on and uses the shared
module as a regular Android library.
This is an Xcode project that builds into an iOS application.
It depends on and uses the shared
module as a CocoaPods dependency.
To run your application on an Android emulator:
-
Ensure you have an Android virtual device available. Otherwise, create one.
-
In the list of run configurations, select
androidApp
. -
Choose your virtual device and click Run:
Alternatively, use Gradle
To install an Android application on a real device Android device or an emulator, run ./gradlew installDebug
in the terminal.
To run your application on an iOS simulator in Android Studio, modify the iosApp
run configuration:
-
In the list of run configurations, select Edit Configurations:
-
Navigate to iOS Application | iosApp.
-
In the Execution target list, select your target device. Click OK:
-
The
iosApp
run configuration is now available. Click Run next to your virtual device:
You can run your Compose Multiplatform application on a real iOS device for free. To do so, you'll need the following:
TEAM_ID
associated with your Apple ID- The iOS device registered in Xcode
Note Before you continue, we suggest creating a simple "Hello, world!" project in Xcode to ensure you can successfully run apps on your device. You can follow the instructions below or watch this Stanford CS193P lecture recording.
How to create and run a simple project in Xcode
- On the Xcode welcome screen, select Create a new project in Xcode.
- On the iOS tab, choose the App template. Click Next.
- Specify the product name and keep other settings default. Click Next.
- Select where to store the project on your computer and click Create. You'll see an app that displays "Hello, world!" on the device screen.
- At the top of your Xcode screen, click on a device name near the Run button.
- Plug in your device to the computer. You'll see this device in the list of run options.
- Choose your device and click Run.
In the terminal, run kdoctor --team-ids
to find your Team ID.
KDoctor will list all Team IDs currently configured on your system, for example:
3ABC246XYZ (Max Sample)
ZABCW6SXYZ (SampleTech Inc.)
Alternative way of finding your Team ID
If KDoctor doesn't work for you, try this alternative method:
-
In Android Studio, run the
iosApp
configuration with the selected real device. The build should fail. -
Go to Xcode and select Open a project or file.
-
Navigate to the
iosApp/iosApp.xcworkspace
file of your project. -
In the left menu, select
iosApp
. -
Navigate to Signing & Capabilities.
-
In the Team list, select your personal team.
If you haven't set up your team yet, use the Add account option and follow the steps.
To run the application, set the TEAM_ID
:
- In the template, navigate to the
iosApp/Configuration/Config.xcconfig
file. - Set your
TEAM_ID
. - Re-open the project in Android Studio. It should show the registered iOS device in the
iosApp
run configuration.
You can now make some changes in the code and see that they will be visible in both iOS and Android applications at once:
-
In Android Studio, navigate to the
shared/src/commonMain/kotlin/App.kt
file. It's the common entry point for your Compose Multiplatform app.Here, you see the code responsible for rendering the "Hello, World!" button and the animated Compose Multiplatform logo:
@OptIn(ExperimentalResourceApi::class) @Composable fun App() { MaterialTheme { var greetingText by remember { mutableStateOf("Hello, World!") } var showImage by remember { mutableStateOf(false) } Column(Modifier.fillMaxWidth(), horizontalAlignment = Alignment.CenterHorizontally) { Button(onClick = { greetingText = "Hello, ${getPlatformName()}" showImage = !showImage }) { Text(greetingText) } AnimatedVisibility(showImage) { Image( painterResource("compose-multiplatform.xml"), null ) } } } }
-
Update the shared code by adding a text field that will update the name displayed on the button:
@OptIn(ExperimentalResourceApi::class) @Composable fun App() { MaterialTheme { var greetingText by remember { mutableStateOf("Hello, World!") } var showImage by remember { mutableStateOf(false) } Column(Modifier.fillMaxWidth(), horizontalAlignment = Alignment.CenterHorizontally) { Button(onClick = { greetingText = "Hello, ${getPlatformName()}" showImage = !showImage }) { Text(greetingText) } + TextField(greetingText, onValueChange = { greetingText = it }) AnimatedVisibility(showImage) { Image( painterResource("compose-multiplatform.xml"), null ) } } } }
-
Re-run both
androidApp
andiosApp
configurations. You'll see this change reflected in both the Android and iOS apps:
To get a better understanding of this template's setup and learn how to configure the basic properties of your iOS app without Xcode,
open the iosApp/Configuration/Config.xcconfig
file in Android Studio. The configuration file contains:
APP_NAME
, a target executable and an application bundle nameBUNDLE_ID
that uniquely identifies the app throughout the systemTEAM_ID
, a unique identifier generated by Apple that's assigned to your team
To configure the APP_NAME
option, open Config.xcconfig
in any text editor before opening the project in Android Studio and set the desired name.
If you need to change this option after you open the project in Android Studio, do the following:
- Close the project in Android Studio.
- Run
./cleanup.sh
in your terminal. - Change the setting.
- Open the project in Android Studio again.
To configure advanced settings, use Xcode. After opening the project in Android Studio,
go to Xcode and open the iosApp/iosApp.xcworkspace
file, and make changes.
We encourage you to explore Compose Multiplatform further and try out more projects: