Tensorflow implemetation of various GANs on MNIST.
Name | Paper Link |
---|---|
GAN | Arxiv |
WGAN | Arxiv |
WGAN-GP | Arxiv |
LSGAN | Arxiv |
DRAGAN | Arxiv |
CGAN | Arxiv |
infoGAN | Arxiv |
Download mnist.npz
from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz .
Put it into data/mnist
.
Train a wgan
with gradient clipping to -0.05 to 0.05, with D and G using CNN structure, D:G=5:1
.
python main.py --gan_type wgan --net_type cnn --clip 0.05 --D_iter 5 --epoch 10
Execute run.sh
to train all models and generate images.
./run.sh
Clean figs, checkpoints and logs of one model.
python main.py --todo clear --gan_type gan --net_type cnn
Name | Epoch 0 | Epoch 5 | Epoch 9 |
---|---|---|---|
GAN | ![]() |
![]() |
![]() |
WGAN | ![]() |
![]() |
![]() |
WGAN-GP | ![]() |
![]() |
![]() |
LSGAN | ![]() |
![]() |
![]() |
DRAGAN | ![]() |
![]() |
![]() |
CGAN | ![]() |
![]() |
![]() |
Name | Epoch 0 | Epoch 10 | Epoch 19 |
---|---|---|---|
GAN | ![]() |
![]() |
![]() |
WGAN | ![]() |
![]() |
![]() |
WGAN-GP | ![]() |
![]() |
![]() |
LSGAN | ![]() |
![]() |
![]() |
DRAGAN | ![]() |
![]() |
![]() |
CGAN | ![]() |
![]() |
![]() |
- tensorflow-generative-model-collections
- sngan_projection
- Spectral_Normalization-Tensorflow
- WassersteinGAN
- gan_practice