title
$$ \left[ \begin{matrix} 1 & 2 & \cdots & 4 \ 7 & 6 & \cdots & 5 \ \vdots & \vdots & \ddots & \vdots \ 8 & 9 & \cdots & 0 \ \end{matrix} \right] $$ 我们使用矩阵 ![](https://latex.codecogs.com/gif.latex?\bigl(\begin{smallmatrix} a & b \ c & d \end{smallmatrix} \bigr))$\bigl( \begin{smallmatrix} a & b \ c & d \end{smallmatrix} \bigr)$ 作为因子矩阵
![](https://latex.codecogs.com/gif.latex?\left[\begin{array}{cc|c}1 & 2 & 3 \4 & 5 & 6\end{array}\right]) $$ \left[ \begin{array}{cc|c} 1 & 2 & 3 \ 4 & 5 & 6 \end{array} \right] \tag{7} $$
![](https://latex.codecogs.com/gif.latex?\begin{align}h(x) =& \frac{1}{\int_xt(x)\mathrm{d}x} \tag{1}\f(x) =&\frac{1}{\int_x\eta(x)\mathrm{d}x}g(x)\tag{2}\end{align}) $$ \begin{align} h(x) =& \frac{1}{\int_xt(x)\mathrm{d}x} \tag{1}\ f(x) =& \frac{1}{\int_x\eta(x)\mathrm{d}x}g(x)\tag{2} \end{align} $$
$$ \begin{eqnarray} a & = & b + c \ & = & d + e + f + g + h + i
- j + k + l\ && +: m + n + o \ & = & p + q + r + s \end{eqnarray} $$