Skip to content

StarXian/PhenoGraph

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PhenoGraph for Python3

PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") representing phenotypic similarities between cells and then identifying communities in this graph.

This implementation is written in Python3 and depends only on scikit-learn (>= 0.17) and its dependencies.

This software package includes compiled binaries that run community detection based on C++ code written by E. Lefebvre and J.-L. Guillaume in 2008 ("Louvain method"). The code has been altered to interface more efficiently with the Python code here. It should work on reasonably current Linux, Mac and Windows machines.

To install PhenoGraph, simply run the setup script:

python3 setup.py install

Or use:

pip3 install git+https://github.com/jacoblevine/phenograph.git

Expected use is within a script or interactive kernel running Python 3.x. Data are expected to be passed as a numpy.ndarray. When applicable, the code uses CPU multicore parallelism via multiprocessing.

To run basic clustering:

import phenograph
communities, graph, Q = phenograph.cluster(data)

For a dataset of N rows, communities will be a length N vector of integers specifying a community assignment for each row in the data. Any rows assigned -1 were identified as outliers and should not be considered as a member of any community. graph is a N x N scipy.sparse matrix representing the weighted graph used for community detection. Q is the modularity score for communities as applied to graph.

If you use PhenoGraph in work you publish, please cite our publication:

@article{Levine_PhenoGraph_2015,
  doi = {10.1016/j.cell.2015.05.047},
  url = {http://dx.doi.org/10.1016/j.cell.2015.05.047},
  year  = {2015},
  month = {jul},
  publisher = {Elsevier {BV}},
  volume = {162},
  number = {1},
  pages = {184--197},
  author = {Jacob H. Levine and Erin F. Simonds and Sean C. Bendall and Kara L. Davis and El-ad D. Amir and Michelle D. Tadmor and Oren Litvin and Harris G. Fienberg and Astraea Jager and Eli R. Zunder and Rachel Finck and Amanda L. Gedman and Ina Radtke and James R. Downing and Dana Pe'er and Garry P. Nolan},
  title = {Data-Driven Phenotypic Dissection of {AML} Reveals Progenitor-like Cells that Correlate with Prognosis},
  journal = {Cell}
}

Release Notes

Version 1.5.2

  • Include simple parallel implementation of brute force nearest neighbors search using scipy's cdist and multiprocessing. This may be more efficient than kdtree on very large high-dimensional data sets and avoids memory issues that arise in sklearn's implementation.
  • Refactor parallel_jaccard_kernel to remove unnecessary use of ctypes and multiprocessing.Array.

Version 1.5.1

  • Make louvain_time_limit a parameter to phenograph.cluster.

Version 1.5

  • phenograph.cluster can now take as input a square sparse matrix, which will be interpreted as a k-nearest neighbor graph. Note that this graph must have uniform degree (i.e. the same value of k at every point).
  • The default time_limit for Louvain iterations has been increased to a more generous 2000 seconds (~half hour).

Version 1.4.1

  • After observing inconsistent behavior of sklearn.NearestNeighbors with respect to inclusion of self-neighbors, the code now checks that self-neighbors have been included before deleting those entries.

Version 1.4

  • The dependence on IPython and/or ipyparallel has been removed. Instead the native multiprocessing package is used.
  • Multiple CPUs are used by default for computation of nearest neighbors and Jaccard graph.

Version 1.3

  • Proper support for Linux.

About

Subpopulation detection in high-dimensional single-cell data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%