This project demonstrates the generation of images based on textual prompts using Stable Diffusion and GPT-3. Stable Diffusion is a technique for generating high-quality images by iteratively refining a noise tensor. GPT-3, on the other hand, is a state-of-the-art language model capable of understanding and generating human-like text.
pathlib
: A library for handling file paths.tqdm
: A library for displaying progress bars during iterative processes.torch
: PyTorch, a deep learning framework.pandas
: A data manipulation library.numpy
: A library for numerical computing.diffusers
: A library for Stable Diffusion image generation.transformers
: A library for natural language processing tasks, including interaction with GPT-3.matplotlib.pyplot
: A library for creating visualizations.cv2
: OpenCV, a library for computer vision tasks.
device
: Specifies the device to run computations on (e.g., "cuda" for GPU).seed
: Seed value for random number generation.generator
: PyTorch generator initialized with the specified seed.image_gen_steps
: Number of steps for image generation.image_gen_model_id
: Identifier for the Stable Diffusion model.image_gen_size
: Size of the generated image.image_gen_guidance_scale
: Scale for guiding image generation.prompt_gen_model_id
: Identifier for the GPT-3 model.prompt_dataset_size
: Size of the dataset for generating prompts.prompt_max_length
: Maximum length of generated prompts.
The generate_image
function takes a textual prompt and a model as input and generates an image based on the prompt using the Stable Diffusion technique.
- Set up the configuration parameters in the
CFG
class according to your requirements. - Call the
generate_image
function with the desired prompt and model to generate an image.
- Stable Diffusion: GitHub Repository
- GPT-3: OpenAI API