- Complete Exploratory Data Analysis.
- Utilize Machine Learning to cluster.
- Deploy a dashboard to report findings. (The dashboards are offline. I have conserved costs for other vital applications!)
- Deploy an application for detecting hackers.
- Hacker Detection Application
- Please be patient in loading the application.
- Hacker Detection Application
- Playerunknown's Battleground (PUBG) is a video game, which set the standard for preceding games in the Battle Royale genre. The main goal is to SURVIVE at all costs.
PUBG-clustering-player-behavior-for-cheaters/
├── assets/ # Directory containing asset files
├── data/ # Directory containing data files
├── Animation.gif # GIF demonstrating the project's functionality
├── PUBG_Clustering-AnomalyDetection.ipynb # Jupyter Notebook for anomaly detection analysis
├── PUBG_Clustering-DBSCAN.ipynb # Jupyter Notebook for DBSCAN clustering analysis
├── PUBG_Clustering-K-means.ipynb # Jupyter Notebook for K-means clustering analysis
├── PUBG_Clustering-PCA-AnomalyDetection(All Features).ipynb # PCA and anomaly detection on all features
├── PUBG_Clustering-PCA-AnomalyDetection(Selected Features).ipynb # PCA and anomaly detection on selected features
├── PUBG_Clustering-PCA-DBSCAN(All Features).ipynb # PCA and DBSCAN clustering on all features
├── PUBG_Clustering-PCA-DBSCAN(Selected Features).ipynb # PCA and DBSCAN clustering on selected features
├── PUBG_Clustering-PCA-K-means(All Features).ipynb # PCA and K-means clustering on all features
├── PUBG_Clustering-PCA-K-means(Selected Features).ipynb # PCA and K-means clustering on selected features
├── PUBG_EDA-Dashboard.ipynb # Jupyter Notebook for exploratory data analysis dashboard
├── PUBG_Project Summary_Dashboard.ipynb # Jupyter Notebook summarizing the project with a dashboard
└── README.md # Overview of the repository
- Exploratory Data Analysis conducted utilizing various python packages (Numpy, Matplotlib, Pandas, and Plotly).
- Clustering Algorithms (Sci-Kit Learn)
-
Part I: Exploratory Data Analysis
-
Part II: Clustering
-
Utilize various clustering algorithms for detecting cheaters or hackers.
-
Utilize PCA + previous clustering algorithms (All features).
-
Utilize PCA + previous clustering algorithms (Selected features).
-
Pertinent Deliverables
-
- References
- [1] M. Breunig, H. Kriegel, R. Ng and J. Sander, "LOF", ACM SIGMOD Record, vol. 29, no. 2, pp. 93-104, 2000. Available: 10.1145/335191.335388.
- [2] "Survey Report on K-Means Clustering Algorithm", International Journal of Modern Trends in Engineering & Research, vol. 4, no. 4, pp. 218-221, 2017. Available: 10.21884/ijmter.2017.4143.lgjzd.
- [3] A. Drachen, "Introducing Clustering IV: The Case of Tera Online", Gamasutra.com, 2020. [Online]. Available: https://www.gamasutra.com/blogs/AndersDrachen/20140603/218817/Introducing_Clustering_IV_The_Case_of_Tera_Online.php. [Accessed: 02- Mar- 2020].
- [4] G. News, G. Originals, G. Trailers, G. Guides, M. TV and G. REVIEWS, "Here's How Many PUBG Cheaters Have Been Banned", Game Rant, 2020. [Online]. Available: https://gamerant.com/playerunknowns-battlegrounds-cheater-ban-count/. [Accessed: 02- Mar- 2020].
- [5] P. Rousseeuw and K. Driessen, "A Fast Algorithm for the Minimum Covariance Determinant Estimator", Technometrics, vol. 41, no. 3, pp. 212-223, 1999. Available: 10.1080/00401706.1999.10485670.
- [6] S. Ounacer, H. Ait El Bour, Y. Oubrahim, M. Ghoumari and M. Azzouazi, "Using Isolation Forest in anomaly detection: the case of credit card transactions", Periodicals of Engineering and Natural Sciences (PEN), vol. 6, no. 2, p. 394, 2018. Available: 10.21533/pen.v6i2.533.
- [7] A. Daffertshofer, C. Lamoth, O. Meijer and P. Beek, "PCA in studying coordination and variability: a tutorial", Clinical Biomechanics, vol. 19, no. 4, pp. 415-428, 2004. Available: 10.1016/j.clinbiomech.2004.01.005.