This module has only one function call:
MBRLAgent(Models, Environments, AgentParameter, ModelParameter)
This function combines model free agents with model learning.
This module depends mainly on:
- RLTypes
- DDPG
- DQN
- NODEDynamics
- ODERNNDynamics
- Conda
- PyCall
- Gymnasium, this is a slightly adapted version. The original package can be found here
In the Julia REPL, run
using Pkg
Pkg.add("Conda")
Pkg.add("PyCall")
Pkg.add(url="https://github.com/SvenDuve/MBRL.jl")
Pkg.add(url="https://github.com/SvenDuve/RLTypes.jl")
Then again within julia,
using Conda
using PyCall
Conda.pip_interop(true)
Conda.add("wheel")
Conda.add("box2d-py")
Conda.add("pygame")
Conda.pip("install", "git+https://github.com/SvenDuve/Gymnasium")
Bring package into scope with
using MBRL
Once the above is installed, the following code can be used to train an agent:
using MBRL
using RLTypes
MBRLAgent(NODEModel(), Pendulum(), AgentParameter(training_episodes=500), ModelParameter())
Caution, this code will take a long time to run.