Skip to content

Tearchoi-Womanne/OOTDiffusion

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OOTDiffusion

This repository is the official implementation of OOTDiffusion

Try our OOTDiffusion

🤩 Please give me a star if you find it interesting!

OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on
Yuhao Xu, Tao Gu, Weifeng Chen, Chengcai Chen
Xiao-i Research

Our paper is coming soon!

🔥🔥 Our model checkpoints trained on VITON-HD (768 * 1024) have been released!

Checkpoints trained on Dress Code (768 * 1024) will be released soon. Thanks for your patience ❤

🤗 Hugging Face Link
We use checkpoints of humanparsing and openpose in preprocess. Please refer to their guidance if you encounter relevant environmental issues
Please download clip-vit-large-patch14 into checkpoints folder

demo  workflow 

Installation

  1. Clone the repository
git clone https://github.com/levihsu/OOTDiffusion
  1. Create a conda environment and install the required packages
conda create -n ootd python==3.10
conda activate ootd
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 numpy==1.24.4 scipy==1.10.1 scikit-image==0.21.0 opencv-python==4.7.0.72 pillow==9.4.0 diffusers==0.24.0 transformers==4.36.2 accelerate==0.26.1 matplotlib==3.7.4 tqdm==4.64.1 gradio==4.16.0 config==0.5.1 einops==0.7.0 ninja==1.10.2

Inference

  1. Half-body model
cd OOTDiffusion/run
python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --scale 2.0 --sample 4
  1. Full-body model

Garment category must be paired: 0 = upperbody; 1 = lowerbody; 2 = dress

cd OOTDiffusion/run
python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --model_type dc --category 2 --scale 2.0 --sample 4

TODO List

  • Paper
  • Gradio demo
  • Inference code
  • Model weights
  • Training code

About

Official implementation of OOTDiffusion

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.4%
  • Cuda 5.1%
  • C++ 2.9%
  • Shell 0.5%
  • Dockerfile 0.1%
  • C 0.0%