Skip to content
This repository has been archived by the owner on Dec 14, 2022. It is now read-only.

Commit

Permalink
Merge branch 'slub/cleanups' into slab/next
Browse files Browse the repository at this point in the history
* Fix a merge conflict in mm/slub.c::acquire_slab() due to commit 02d7633
  ("slub: fix a memory leak in get_partial_node()").

Conflicts:
	mm/slub.c

Signed-off-by: Pekka Enberg <[email protected]>
  • Loading branch information
penberg committed Jun 4, 2012
2 parents f8f5701 + 57d437d commit 23910c5
Show file tree
Hide file tree
Showing 2 changed files with 92 additions and 82 deletions.
1 change: 0 additions & 1 deletion include/linux/slub_def.h
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,6 @@ struct kmem_cache_cpu {
unsigned long tid; /* Globally unique transaction id */
struct page *page; /* The slab from which we are allocating */
struct page *partial; /* Partially allocated frozen slabs */
int node; /* The node of the page (or -1 for debug) */
#ifdef CONFIG_SLUB_STATS
unsigned stat[NR_SLUB_STAT_ITEMS];
#endif
Expand Down
173 changes: 92 additions & 81 deletions mm/slub.c
Original file line number Diff line number Diff line change
Expand Up @@ -1490,12 +1490,12 @@ static inline void remove_partial(struct kmem_cache_node *n,
}

/*
* Lock slab, remove from the partial list and put the object into the
* per cpu freelist.
* Remove slab from the partial list, freeze it and
* return the pointer to the freelist.
*
* Returns a list of objects or NULL if it fails.
*
* Must hold list_lock.
* Must hold list_lock since we modify the partial list.
*/
static inline void *acquire_slab(struct kmem_cache *s,
struct kmem_cache_node *n, struct page *page,
Expand All @@ -1510,26 +1510,27 @@ static inline void *acquire_slab(struct kmem_cache *s,
* The old freelist is the list of objects for the
* per cpu allocation list.
*/
do {
freelist = page->freelist;
counters = page->counters;
new.counters = counters;
if (mode) {
new.inuse = page->objects;
new.freelist = NULL;
} else {
new.freelist = freelist;
}
freelist = page->freelist;
counters = page->counters;
new.counters = counters;
if (mode) {
new.inuse = page->objects;
new.freelist = NULL;
} else {
new.freelist = freelist;
}

VM_BUG_ON(new.frozen);
new.frozen = 1;
VM_BUG_ON(new.frozen);
new.frozen = 1;

} while (!__cmpxchg_double_slab(s, page,
if (!__cmpxchg_double_slab(s, page,
freelist, counters,
new.freelist, new.counters,
"lock and freeze"));
"acquire_slab"))
return NULL;

remove_partial(n, page);
WARN_ON(!freelist);
return freelist;
}

Expand Down Expand Up @@ -1563,7 +1564,6 @@ static void *get_partial_node(struct kmem_cache *s,

if (!object) {
c->page = page;
c->node = page_to_nid(page);
stat(s, ALLOC_FROM_PARTIAL);
object = t;
available = page->objects - page->inuse;
Expand Down Expand Up @@ -1731,14 +1731,12 @@ void init_kmem_cache_cpus(struct kmem_cache *s)
/*
* Remove the cpu slab
*/
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
{
enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
struct page *page = c->page;
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
int lock = 0;
enum slab_modes l = M_NONE, m = M_NONE;
void *freelist;
void *nextfree;
int tail = DEACTIVATE_TO_HEAD;
struct page new;
Expand All @@ -1749,11 +1747,6 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
tail = DEACTIVATE_TO_TAIL;
}

c->tid = next_tid(c->tid);
c->page = NULL;
freelist = c->freelist;
c->freelist = NULL;

/*
* Stage one: Free all available per cpu objects back
* to the page freelist while it is still frozen. Leave the
Expand Down Expand Up @@ -2011,7 +2004,11 @@ int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
stat(s, CPUSLAB_FLUSH);
deactivate_slab(s, c);
deactivate_slab(s, c->page, c->freelist);

c->tid = next_tid(c->tid);
c->page = NULL;
c->freelist = NULL;
}

/*
Expand Down Expand Up @@ -2055,10 +2052,10 @@ static void flush_all(struct kmem_cache *s)
* Check if the objects in a per cpu structure fit numa
* locality expectations.
*/
static inline int node_match(struct kmem_cache_cpu *c, int node)
static inline int node_match(struct page *page, int node)
{
#ifdef CONFIG_NUMA
if (node != NUMA_NO_NODE && c->node != node)
if (node != NUMA_NO_NODE && page_to_nid(page) != node)
return 0;
#endif
return 1;
Expand Down Expand Up @@ -2130,10 +2127,16 @@ slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
int node, struct kmem_cache_cpu **pc)
{
void *object;
struct kmem_cache_cpu *c;
struct page *page = new_slab(s, flags, node);
void *freelist;
struct kmem_cache_cpu *c = *pc;
struct page *page;

freelist = get_partial(s, flags, node, c);

if (freelist)
return freelist;

page = new_slab(s, flags, node);
if (page) {
c = __this_cpu_ptr(s->cpu_slab);
if (c->page)
Expand All @@ -2143,17 +2146,16 @@ static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
* No other reference to the page yet so we can
* muck around with it freely without cmpxchg
*/
object = page->freelist;
freelist = page->freelist;
page->freelist = NULL;

stat(s, ALLOC_SLAB);
c->node = page_to_nid(page);
c->page = page;
*pc = c;
} else
object = NULL;
freelist = NULL;

return object;
return freelist;
}

/*
Expand All @@ -2173,6 +2175,7 @@ static inline void *get_freelist(struct kmem_cache *s, struct page *page)
do {
freelist = page->freelist;
counters = page->counters;

new.counters = counters;
VM_BUG_ON(!new.frozen);

Expand Down Expand Up @@ -2206,7 +2209,8 @@ static inline void *get_freelist(struct kmem_cache *s, struct page *page)
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
unsigned long addr, struct kmem_cache_cpu *c)
{
void **object;
void *freelist;
struct page *page;
unsigned long flags;

local_irq_save(flags);
Expand All @@ -2219,25 +2223,29 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
c = this_cpu_ptr(s->cpu_slab);
#endif

if (!c->page)
page = c->page;
if (!page)
goto new_slab;
redo:
if (unlikely(!node_match(c, node))) {

if (unlikely(!node_match(page, node))) {
stat(s, ALLOC_NODE_MISMATCH);
deactivate_slab(s, c);
deactivate_slab(s, page, c->freelist);
c->page = NULL;
c->freelist = NULL;
goto new_slab;
}

/* must check again c->freelist in case of cpu migration or IRQ */
object = c->freelist;
if (object)
freelist = c->freelist;
if (freelist)
goto load_freelist;

stat(s, ALLOC_SLOWPATH);

object = get_freelist(s, c->page);
freelist = get_freelist(s, page);

if (!object) {
if (!freelist) {
c->page = NULL;
stat(s, DEACTIVATE_BYPASS);
goto new_slab;
Expand All @@ -2246,50 +2254,50 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
stat(s, ALLOC_REFILL);

load_freelist:
c->freelist = get_freepointer(s, object);
/*
* freelist is pointing to the list of objects to be used.
* page is pointing to the page from which the objects are obtained.
* That page must be frozen for per cpu allocations to work.
*/
VM_BUG_ON(!c->page->frozen);
c->freelist = get_freepointer(s, freelist);
c->tid = next_tid(c->tid);
local_irq_restore(flags);
return object;
return freelist;

new_slab:

if (c->partial) {
c->page = c->partial;
c->partial = c->page->next;
c->node = page_to_nid(c->page);
page = c->page = c->partial;
c->partial = page->next;
stat(s, CPU_PARTIAL_ALLOC);
c->freelist = NULL;
goto redo;
}

/* Then do expensive stuff like retrieving pages from the partial lists */
object = get_partial(s, gfpflags, node, c);

if (unlikely(!object)) {
freelist = new_slab_objects(s, gfpflags, node, &c);

object = new_slab_objects(s, gfpflags, node, &c);
if (unlikely(!freelist)) {
if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
slab_out_of_memory(s, gfpflags, node);

if (unlikely(!object)) {
if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
slab_out_of_memory(s, gfpflags, node);

local_irq_restore(flags);
return NULL;
}
local_irq_restore(flags);
return NULL;
}

page = c->page;
if (likely(!kmem_cache_debug(s)))
goto load_freelist;

/* Only entered in the debug case */
if (!alloc_debug_processing(s, c->page, object, addr))
if (!alloc_debug_processing(s, page, freelist, addr))
goto new_slab; /* Slab failed checks. Next slab needed */

c->freelist = get_freepointer(s, object);
deactivate_slab(s, c);
c->node = NUMA_NO_NODE;
deactivate_slab(s, page, get_freepointer(s, freelist));
c->page = NULL;
c->freelist = NULL;
local_irq_restore(flags);
return object;
return freelist;
}

/*
Expand All @@ -2307,6 +2315,7 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
{
void **object;
struct kmem_cache_cpu *c;
struct page *page;
unsigned long tid;

if (slab_pre_alloc_hook(s, gfpflags))
Expand All @@ -2332,7 +2341,8 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
barrier();

object = c->freelist;
if (unlikely(!object || !node_match(c, node)))
page = c->page;
if (unlikely(!object || !node_match(page, node)))

object = __slab_alloc(s, gfpflags, node, addr, c);

Expand Down Expand Up @@ -4500,30 +4510,31 @@ static ssize_t show_slab_objects(struct kmem_cache *s,

for_each_possible_cpu(cpu) {
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
int node = ACCESS_ONCE(c->node);
int node;
struct page *page;

if (node < 0)
continue;
page = ACCESS_ONCE(c->page);
if (page) {
if (flags & SO_TOTAL)
x = page->objects;
else if (flags & SO_OBJECTS)
x = page->inuse;
else
x = 1;
if (!page)
continue;

total += x;
nodes[node] += x;
}
page = c->partial;
node = page_to_nid(page);
if (flags & SO_TOTAL)
x = page->objects;
else if (flags & SO_OBJECTS)
x = page->inuse;
else
x = 1;

total += x;
nodes[node] += x;

page = ACCESS_ONCE(c->partial);
if (page) {
x = page->pobjects;
total += x;
nodes[node] += x;
}

per_cpu[node]++;
}
}
Expand Down

0 comments on commit 23910c5

Please sign in to comment.