forked from BeSpontaneous/Proteus-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels_clip.py
438 lines (335 loc) · 15.1 KB
/
models_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
from collections import OrderedDict
from typing import Tuple, Union, Callable
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.init import trunc_normal_
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
if not depth_first and include_root:
fn(module=module, name=name)
for child_name, child_module in module.named_children():
child_name = ".".join((name, child_name)) if name else child_name
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
if depth_first and include_root:
fn(module=module, name=name)
return module
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.relu2 = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu3 = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(OrderedDict([
("-1", nn.AvgPool2d(stride)),
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
("1", nn.BatchNorm2d(planes * self.expansion))
]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu1(self.bn1(self.conv1(x)))
out = self.relu2(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu3(out)
return out
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(
query=x[:1], key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
return x.squeeze(0)
class ModifiedResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
super().__init__()
self.output_dim = output_dim
self.input_resolution = input_resolution
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.relu3 = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(2)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
def stem(x):
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
x = self.avgpool(x)
return x
x = x.type(self.conv1.weight.dtype)
x = stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.attnpool(x)
return x
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor):
x = x.permute(1, 0, 2) # NLD -> LND
x = self.resblocks(x)
x = x.permute(1, 0, 2) # LND -> NLD
return x
class VisionTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int):
super().__init__()
self.input_resolution = input_resolution
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads)
self.mask_token = nn.Parameter(torch.zeros(1, width))
self.ln_post = LayerNorm(width)
self.embed_dim = width
self.patch_size = patch_size
self.init_weights()
def init_weights(self):
trunc_normal_(self.positional_embedding, std=0.02)
nn.init.normal_(self.class_embedding, std=1e-6)
named_apply(init_weights_vit_timm, self)
def prepare_tokens_with_masks(self, x, masks=None):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
if masks is not None:
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
return x
def forward_features_list(self, x_list, masks_list):
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
all_x = [self.transformer(t) for t in x]
output = []
for x, masks in zip(all_x, masks_list):
output.append(
{
"x_norm_clstoken": self.ln_post(x[:, 0]),
"x_norm_patchtokens": x[:, 1 :],
"x_prenorm": x,
"masks": masks,
}
)
return output
def forward(self, x: torch.Tensor, masks=None):
if isinstance(x, list):
return self.forward_features_list(x, masks)
x = self.prepare_tokens_with_masks(x, masks)
x = self.transformer(x)
return {
"x_norm_clstoken": self.ln_post(x[:, 0]),
"x_norm_patchtokens": x[:, 1 :],
"x_prenorm": x,
"masks": masks,
}
def init_weights_vit_timm(module: nn.Module, name: str = ""):
"""ViT weight initialization, original timm impl (for reproducibility)"""
if isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
def vit_small(patch_size=14, teacher_path=None):
model = VisionTransformer(
input_resolution=224,
patch_size=patch_size,
width=384,
layers=12,
heads=6
)
if teacher_path is not None:
checkpoint = torch.load(teacher_path, map_location='cpu')
if 'state_dict' in checkpoint:
pretrained_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
pretrained_dict = checkpoint['model']
else:
pretrained_dict = checkpoint
missing_keys, unexpected_keys = model.load_state_dict(pretrained_dict, False)
print('missing_keys: ', missing_keys)
print('unexpected_keys: ', unexpected_keys)
return model
def vit_base(patch_size=14, teacher_path=None):
model = VisionTransformer(
input_resolution=224,
patch_size=patch_size,
width=768,
layers=12,
heads=12
)
if teacher_path is not None:
checkpoint = torch.load(teacher_path, map_location='cpu')
if 'state_dict' in checkpoint:
pretrained_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
pretrained_dict = checkpoint['model']
else:
pretrained_dict = checkpoint
missing_keys, unexpected_keys = model.load_state_dict(pretrained_dict, False)
print('missing_keys: ', missing_keys)
print('unexpected_keys: ', unexpected_keys)
return model
def vit_large(patch_size=14, teacher_path=None):
model = VisionTransformer(
input_resolution=224,
patch_size=patch_size,
width=1024,
layers=24,
heads=16
)
if teacher_path is not None:
checkpoint = torch.load(teacher_path, map_location='cpu')
if 'state_dict' in checkpoint:
pretrained_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
pretrained_dict = checkpoint['model']
else:
pretrained_dict = checkpoint
missing_keys, unexpected_keys = model.load_state_dict(pretrained_dict, False)
print('missing_keys: ', missing_keys)
print('unexpected_keys: ', unexpected_keys)
return model
if __name__ == "__main__":
import argparse
import clip
import open_clip
from fvcore.nn import FlopCountAnalysis, parameter_count_table
parser = argparse.ArgumentParser(description='PyTorch resnet Training')
args = parser.parse_args()
# with torch.no_grad():
# print(clip.available_models())
# device = "cuda" if torch.cuda.is_available() else "cpu"
# model, preprocess = clip.load('ViT-L/14', device)
# print(model.visual)
# model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-16', pretrained='laion400m_e32')
# model = model.to('cuda')
# for k,v in model.visual.named_parameters():
# print(k, v.shape)
# self_model = VisionTransformer(
# input_resolution=224,
# patch_size=32,
# width=768,
# layers=12,
# heads=12
# )
# print(self_model)
# for k,v in self_model.named_parameters():
# print(k, v.shape)
# new_ckpt = OrderedDict()
# for k,v in model.visual.named_parameters():
# if 'proj' != k:
# print(k)
# new_ckpt[k] = v
# new_ckpt[k] = v
# torch.save(new_ckpt, '/home/qw/yitian/TA-KD/clip_model/clip_l_14_400m.pth')
# model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion400m_e32')
# print(model.visual)
# model = clip_base_32()
# model = clip_base_14()
# print(parameter_count_table(model))
# tensor = torch.rand(1, 3, 224, 224)
# flops = FlopCountAnalysis(model, tensor)
# print("FLOPs: ", flops.total()/1e9)