-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnoisy_graphs.py
242 lines (202 loc) · 8.44 KB
/
noisy_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
import matplotlib.pyplot as plt
#from librairy of lukas : vartools
from vartools.dynamical_systems import LinearSystem
#from librairy of lukas : dynamic_obstacle_avoidance
from dynamic_obstacle_avoidance.containers import ObstacleContainer
from dynamic_obstacle_avoidance.obstacles import CuboidXd as Cuboid
from dynamic_obstacle_avoidance.avoidance import ModulationAvoider
#from my librairies
from librairies.robot import Robot
from librairies.controller import RegulationController, TrackingController
from librairies.robot_animation import CotrolledRobotAnimation
from librairies.magic_numbers_and_enums import TypeOfDMatrix as TypeD
from librairies.magic_numbers_and_enums import Approach
import librairies.magic_numbers_and_enums as mn
#just for plotting : global var, remoove when no bug
from librairies.robot_animation import s_list
def run_control_robot(noise_pos = 0.0, noise_vel = 0.0, is_obs_aw = True):
mn.NOISE_STD_POS = noise_pos
mn.NOISE_STD_VEL = noise_vel
if is_obs_aw:
type_of_contr = TypeD.BOTH
else:
type_of_contr = TypeD.DS_FOLLOWING
dt_simulation = 0.01 #attention bug when too small (bc plt takes too much time :( ))
#initial condition
x_init = np.array([-2.0, 0.3]) #0.3
xdot_init = np.array([0.0, 0.0])
#setup atractor
attractor_position = np.array([2.0, 0.0])
#setup of obstacles
obstacle_environment = ObstacleContainer()
# obstacle_environment.append(
# Cuboid(
# axes_length=[0.6, 0.6],
# center_position=np.array([0.0, 0.0]),
# # center_position=np.array([0.9, 0.25]),
# margin_absolut=0.15,
# # orientation=10 * pi / 180,
# #linear_velocity = np.array([0.0, 1.0]),
# tail_effect=False,
# # repulsion_coeff=1.4,
# )
# )
obstacle_environment.append(
Cuboid(
axes_length=[0.4, 3.8],
center_position=np.array([-0.5, -1.5]),
# center_position=np.array([0.9, 0.25]),
margin_absolut=0.15,
# orientation=10 * pi / 180,
#linear_velocity = np.array([0.0, 1.0]),
tail_effect=False,
# repulsion_coeff=1.4,
)
)
obstacle_environment.append(
Cuboid(
axes_length=[0.4, 3.8],
center_position=np.array([0.8, 1.8]),
# center_position=np.array([0.9, 0.25]),
margin_absolut=0.15,
# orientation=10 * pi / 180,
#linear_velocity = np.array([0.0, 1.0]),
tail_effect=False,
# repulsion_coeff=1.4,
)
)
#setup of dynamical system
initial_dynamics = LinearSystem(
attractor_position = attractor_position,
maximum_velocity=3,
distance_decrease=0.5, #if too small, could lead to instable around atractor
)
#setup of compliance values
lambda_DS = 100.0 #must not be > 200 (num error, patch dt smaller) -> 200 makes xdot varies too much
# bc in tau_c compute -D@xdot becomes too big + much more stable at atrat.
lambda_perp = 20.0
lambda_obs = mn.LAMBDA_MAX
if lambda_DS > mn.LAMBDA_MAX or lambda_perp > mn.LAMBDA_MAX or lambda_obs > mn.LAMBDA_MAX:
raise ValueError(f"lambda must be smaller than {mn.LAMBDA_MAX}")
### ROBOT 3 : controlled via DS ###
robot_tracked = Robot(
x = x_init,
xdot = xdot_init,
dt = dt_simulation,
noisy= True,
controller = TrackingController(
dynamic_avoider = ModulationAvoider(
initial_dynamics=initial_dynamics,
obstacle_environment=obstacle_environment,
),
lambda_DS=lambda_DS,
lambda_perp=lambda_perp,
lambda_obs = lambda_obs,
type_of_D_matrix = type_of_contr, # TypeD.DS_FOLLOWING or TypeD.OBS_PASSIVITY or TypeD.BOTH
approach = Approach.ORTHO_BASIS,
with_E_storage = False
),
)
#setup of animator
my_animation = CotrolledRobotAnimation(
it_max = 200, #longer animation
dt_simulation = dt_simulation,
dt_sleep = dt_simulation,
)
my_animation.setup(
robot = robot_tracked,
obstacle_environment = obstacle_environment,
x_lim = [-3, 3],
y_lim = [-2.1, 2.1],#[-2.1, 2.1],
draw_ideal_traj = True,
draw_qolo = True,
rotate_qolo=True,
)
my_animation.run(save_animation=False)
return my_animation.get_d_min()
if (__name__) == "__main__":
plt.close("all")
plt.ion()
n = 8 #8
epochs = 8 #8
d_min_tab_obs_aw = np.zeros((n,epochs))
d_min_tab_kronan = np.zeros((n,epochs))
noise_level = np.linspace(0.0,7.0,n) #for velocity
#noise_level = np.linspace(0.0,0.7,n) #for position
#d_min_tab_obs_aw[0,0] = run_control_robot(noise_pos=0.0, noise_vel=4.0, is_obs_aw = True)
for i, noise in enumerate(noise_level):
print("noise :", noise)
for e in range(epochs):
print("epoch :", e, "noise std : ", noise)
print("aware")
dis_obs = run_control_robot(noise_pos=0.0, noise_vel=noise, is_obs_aw = True)
#dis_obs = dis_obs if dis_obs>0 else 0
d_min_tab_obs_aw[i,e] = dis_obs
plt.close("all")
print("kronan")
dist_kro = run_control_robot(noise_pos=0.0, noise_vel=noise, is_obs_aw = False)
#dist_kro = dist_kro if dist_kro>0 else 0
d_min_tab_kronan[i,e] = dist_kro
plt.close("all")
if i==0:
d_min_tab_obs_aw[0,:] = d_min_tab_obs_aw[0,0]
d_min_tab_kronan[0,:] = d_min_tab_kronan[0,0]
break
np.save("noisy_file\d_min_tab_obs_aw_temp.npy", d_min_tab_obs_aw)
np.save("noisy_file\d_min_tab_kronan_temp.npy", d_min_tab_kronan)
mean_obs = d_min_tab_obs_aw.mean(axis=1)
std_obs = d_min_tab_obs_aw.std(axis=1)
mean_kro = d_min_tab_kronan.mean(axis=1)
std_kro = d_min_tab_kronan.std(axis=1)
fig = plt.figure()
#plt.errorbar(noise_level, mean, yerr=std)
#obstacle aware plot
plt.fill_between(noise_level, mean_obs+std_obs, mean_obs-std_obs, alpha = 0.3, color = 'b')
plt.plot(noise_level, mean_obs, color = 'b', label = "Obstacle aware passive control")
#original kronander plot
plt.fill_between(noise_level, mean_kro+std_kro, mean_kro-std_kro, alpha = 0.3, color = 'r')
plt.plot(noise_level, mean_kro, color = 'r', label = "Traditional passive control")
plt.axhline(y = 0.0, color = 'k', linestyle = '-')
#plt.plot(noise_level, np.zeros_like(noise_level), "k")
#plt.title(f"Effect of velocity measurement noise over {epochs} epochs")
plt.ylabel("Closest distance to obstacle during simulation [m]")
plt.xlabel("Standard deviation of velocity measurement noise [m/s]")
plt.legend(loc="upper right", prop={'size': 12})
fig.show()
plt.show()
plt.savefig('vel_noise.png')
#with clip ar 0
d_min_tab_obs_aw[d_min_tab_obs_aw <= 0] = 0.
d_min_tab_kronan[d_min_tab_kronan <= 0] = 0.
mean_obs = d_min_tab_obs_aw.mean(axis=1)
std_obs = d_min_tab_obs_aw.std(axis=1)
mean_kro = d_min_tab_kronan.mean(axis=1)
std_kro = d_min_tab_kronan.std(axis=1)
fig2 = plt.figure()
#plt.errorbar(noise_level, mean, yerr=std)
#obstacle aware plot
plt.fill_between(noise_level, mean_obs+std_obs, mean_obs-std_obs, alpha = 0.3, color = 'b')
plt.plot(noise_level, mean_obs, color = 'b', label = "Obstacle aware passive control")
#original kronander plot
plt.fill_between(noise_level, mean_kro+std_kro, mean_kro-std_kro, alpha = 0.3, color = 'r')
plt.plot(noise_level, mean_kro, color = 'r', label = "Traditional passive control")
plt.axhline(y = 0.0, color = 'k', linestyle = '-')
#plt.plot(noise_level, np.zeros_like(noise_level), "k")
plt.title(f"Effect of velocity measurement noise over {epochs} epochs")
plt.ylabel("Closest distance to obstacle during simulation [m]")
plt.xlabel("Standard deviation of velocity measurement noise [m/s]")
plt.legend(loc="upper right")
fig2.show()
plt.show()
plt.savefig('vel_noise_cliped.png')
plt.pause(100)
pass
#just for plotting s tank, remoove when done, or implemment better
#fig, ax = plt.subplots()
# fig = plt.figure()
# x = np.linspace(0, len(s_list), len(s_list))
# plt.plot(x, s_list)
# fig.show()
# plt.show()
# pass #add breakpoint here if want to plot s