forked from alex04072000/SingleHDR
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
10 changed files
with
8,258 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
import tensorflow as tf | ||
|
||
class Dequantization_net(object): | ||
def __init__(self, is_train=True): | ||
self.is_train = is_train | ||
|
||
def inference(self, input_images): | ||
"""Inference on a set of input_images. | ||
Args: | ||
""" | ||
return self._build_model(input_images) | ||
|
||
def loss(self, predictions, targets): | ||
"""Compute the necessary loss for training. | ||
Args: | ||
Returns: | ||
""" | ||
return tf.reduce_mean(tf.square(predictions - targets)) | ||
|
||
def down(self, x, outChannels, filterSize): | ||
x = tf.layers.average_pooling2d(x, 2, 2) | ||
x = tf.nn.leaky_relu(tf.layers.conv2d(x, outChannels, filterSize, 1, 'same'), 0.1) | ||
x = tf.nn.leaky_relu(tf.layers.conv2d(x, outChannels, filterSize, 1, 'same'), 0.1) | ||
return x | ||
|
||
def up(self, x, outChannels, skpCn): | ||
x = tf.image.resize_bilinear(x, 2*tf.shape(x)[1:3]) | ||
x = tf.nn.leaky_relu(tf.layers.conv2d(x, outChannels, 3, 1, 'same'), 0.1) | ||
x = tf.nn.leaky_relu(tf.layers.conv2d(tf.concat([x, skpCn], -1), outChannels, 3, 1, 'same'), 0.1) | ||
return x | ||
|
||
def _build_model(self, input_images): | ||
print(input_images.get_shape().as_list()) | ||
x = tf.nn.leaky_relu(tf.layers.conv2d(input_images, 16, 7, 1, 'same'), 0.1) | ||
s1 = tf.nn.leaky_relu(tf.layers.conv2d(x, 16, 7, 1, 'same'), 0.1) | ||
s2 = self.down(s1, 32, 5) | ||
s3 = self.down(s2, 64, 3) | ||
s4 = self.down(s3, 128, 3) | ||
x = self.down(s4, 256, 3) | ||
# x = self.down(s5, 512, 3) | ||
# x = self.up(x, 512, s5) | ||
x = self.up(x, 128, s4) | ||
x = self.up(x, 64, s3) | ||
x = self.up(x, 32, s2) | ||
x = self.up(x, 16, s1) | ||
x = tf.nn.tanh(tf.layers.conv2d(x, 3, 3, 1, 'same')) | ||
output = input_images + x | ||
return output |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,313 @@ | ||
""" | ||
" License: | ||
" ----------------------------------------------------------------------------- | ||
" Copyright (c) 2017, Gabriel Eilertsen. | ||
" All rights reserved. | ||
" | ||
" Redistribution and use in source and binary forms, with or without | ||
" modification, are permitted provided that the following conditions are met: | ||
" | ||
" 1. Redistributions of source code must retain the above copyright notice, | ||
" this list of conditions and the following disclaimer. | ||
" | ||
" 2. Redistributions in binary form must reproduce the above copyright notice, | ||
" this list of conditions and the following disclaimer in the documentation | ||
" and/or other materials provided with the distribution. | ||
" | ||
" 3. Neither the name of the copyright holder nor the names of its contributors | ||
" may be used to endorse or promote products derived from this software | ||
" without specific prior written permission. | ||
" | ||
" THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
" ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | ||
" LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | ||
" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | ||
" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | ||
" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | ||
" POSSIBILITY OF SUCH DAMAGE. | ||
" ----------------------------------------------------------------------------- | ||
" | ||
" Description: TensorFlow autoencoder CNN for HDR image reconstruction. | ||
" Author: Gabriel Eilertsen, [email protected] | ||
" Date: Aug 2017 | ||
""" | ||
|
||
import tensorflow as tf | ||
import tensorlayer as tl | ||
import numpy as np | ||
|
||
|
||
# The HDR reconstruction autoencoder fully convolutional neural network | ||
def model(x, batch_size=1, is_training=False): | ||
# Encoder network (VGG16, until pool5) | ||
x_in = tf.scalar_mul(255.0, x) | ||
net_in = tl.layers.InputLayer(x_in, name='input_layer') | ||
conv_layers, skip_layers = encoder(net_in) | ||
|
||
# Fully convolutional layers on top of VGG16 conv layers | ||
network = tl.layers.Conv2dLayer(conv_layers, | ||
act=tf.identity, | ||
shape=[3, 3, 512, 512], | ||
strides=[1, 1, 1, 1], | ||
padding='SAME', | ||
name='encoder/h6/conv') | ||
#network = tf.layers.batch_normalization(network, training=is_training, name='encoder/h6/batch_norm') | ||
network = tl.layers.BatchNormLayer(network, is_train=is_training, name='encoder/h6/batch_norm') | ||
network.outputs = tf.nn.relu(network.outputs, name='encoder/h6/relu') | ||
|
||
# Decoder network | ||
network = decoder(network, skip_layers, batch_size, is_training) | ||
|
||
"""if is_training: | ||
return network, conv_layers""" | ||
|
||
return network, conv_layers | ||
|
||
|
||
# Final prediction of the model, including blending with input | ||
def get_final(network, x_in): | ||
sb, sy, sx, sf = x_in.get_shape().as_list() | ||
y_predict = network.outputs | ||
|
||
# Highlight mask | ||
thr = 0.05 | ||
alpha = tf.reduce_max(x_in, reduction_indices=[3]) | ||
alpha = tf.minimum(1.0, tf.maximum(0.0, alpha - 1.0 + thr) / thr) | ||
alpha = tf.reshape(alpha, [-1, sy, sx, 1]) | ||
alpha = tf.tile(alpha, [1, 1, 1, 3]) | ||
|
||
# Linearied input and prediction | ||
x_lin = tf.pow(x_in, 2.0) | ||
y_predict = tf.exp(y_predict) - 1.0 / 255.0 | ||
|
||
# Alpha blending | ||
y_final = (1 - alpha) * x_lin + alpha * y_predict | ||
|
||
return y_final | ||
|
||
|
||
# Convolutional layers of the VGG16 model used as encoder network | ||
def encoder(input_layer): | ||
VGG_MEAN = [103.939, 116.779, 123.68] | ||
|
||
# Convert RGB to BGR | ||
red, green, blue = tf.split(input_layer.outputs, 3, 3) | ||
bgr = tf.concat([blue - VGG_MEAN[0], green - VGG_MEAN[1], red - VGG_MEAN[2]], axis=3) | ||
|
||
network = tl.layers.InputLayer(bgr, name='encoder/input_layer_bgr') | ||
|
||
# Convolutional layers size 1 | ||
network = conv_layer(network, [3, 64], 'encoder/h1/conv_1') | ||
beforepool1 = conv_layer(network, [64, 64], 'encoder/h1/conv_2') | ||
network = pool_layer(beforepool1, 'encoder/h1/pool') | ||
|
||
# Convolutional layers size 2 | ||
network = conv_layer(network, [64, 128], 'encoder/h2/conv_1') | ||
beforepool2 = conv_layer(network, [128, 128], 'encoder/h2/conv_2') | ||
network = pool_layer(beforepool2, 'encoder/h2/pool') | ||
|
||
# Convolutional layers size 3 | ||
network = conv_layer(network, [128, 256], 'encoder/h3/conv_1') | ||
network = conv_layer(network, [256, 256], 'encoder/h3/conv_2') | ||
beforepool3 = conv_layer(network, [256, 256], 'encoder/h3/conv_3') | ||
network = pool_layer(beforepool3, 'encoder/h3/pool') | ||
|
||
# Convolutional layers size 4 | ||
network = conv_layer(network, [256, 512], 'encoder/h4/conv_1') | ||
network = conv_layer(network, [512, 512], 'encoder/h4/conv_2') | ||
beforepool4 = conv_layer(network, [512, 512], 'encoder/h4/conv_3') | ||
network = pool_layer(beforepool4, 'encoder/h4/pool') | ||
|
||
# Convolutional layers size 5 | ||
network = conv_layer(network, [512, 512], 'encoder/h5/conv_1') | ||
network = conv_layer(network, [512, 512], 'encoder/h5/conv_2') | ||
beforepool5 = conv_layer(network, [512, 512], 'encoder/h5/conv_3') | ||
network = pool_layer(beforepool5, 'encoder/h5/pool') | ||
|
||
return network, (input_layer, beforepool1, beforepool2, beforepool3, beforepool4, beforepool5) | ||
|
||
|
||
# Decoder network | ||
def decoder(input_layer, skip_layers, batch_size=1, is_training=False): | ||
sb, sx, sy, sf = input_layer.outputs.get_shape().as_list() | ||
alpha = 0.0 | ||
|
||
# Upsampling 1 | ||
network = deconv_layer(input_layer, (batch_size, sx, sy, sf, sf), 'decoder/h1/decon2d', alpha, is_training) | ||
|
||
# Upsampling 2 | ||
network = skip_connection_layer(network, skip_layers[5], 'decoder/h2/fuse_skip_connection', is_training) | ||
network = deconv_layer(network, (batch_size, sx, sy, sf, sf), 'decoder/h2/decon2d', alpha, is_training) | ||
|
||
# Upsampling 3 | ||
network = skip_connection_layer(network, skip_layers[4], 'decoder/h3/fuse_skip_connection', is_training) | ||
network = deconv_layer(network, (batch_size, sx, sy, sf, sf / 2), 'decoder/h3/decon2d', alpha, is_training) | ||
|
||
# Upsampling 4 | ||
network = skip_connection_layer(network, skip_layers[3], 'decoder/h4/fuse_skip_connection', is_training) | ||
network = deconv_layer(network, (batch_size, sx, sy, sf / 2, sf / 4), 'decoder/h4/decon2d', alpha, | ||
is_training) | ||
|
||
# Upsampling 5 | ||
network = skip_connection_layer(network, skip_layers[2], 'decoder/h5/fuse_skip_connection', is_training) | ||
network = deconv_layer(network, (batch_size, sx, sy, sf / 4, sf / 8), 'decoder/h5/decon2d', alpha, | ||
is_training) | ||
|
||
# Skip-connection at full size | ||
network = skip_connection_layer(network, skip_layers[1], 'decoder/h6/fuse_skip_connection', is_training) | ||
|
||
# Final convolution | ||
network = tl.layers.Conv2dLayer(network, | ||
act=tf.identity, | ||
shape=[1, 1, int(sf / 8), 3], | ||
strides=[1, 1, 1, 1], | ||
padding='SAME', | ||
W_init=tf.contrib.layers.xavier_initializer(uniform=False), | ||
b_init=tf.constant_initializer(value=0.0), | ||
name='decoder/h7/conv2d') | ||
|
||
# Final skip-connection | ||
network = tl.layers.BatchNormLayer(network, is_train=is_training, name='decoder/h7/batch_norm') | ||
network.outputs = tf.maximum(alpha * network.outputs, network.outputs, name='decoder/h7/leaky_relu') | ||
network = skip_connection_layer(network, skip_layers[0], 'decoder/h7/fuse_skip_connection') | ||
|
||
return network | ||
|
||
|
||
# Load weights for VGG16 encoder convolutional layers | ||
# Weights are from a .npy file generated with the caffe-tensorflow tool | ||
def load_vgg_weights(network, weight_file, session): | ||
params = [] | ||
|
||
if weight_file.lower().endswith('.npy'): | ||
npy = np.load(weight_file, encoding='latin1') | ||
for key, val in sorted(npy.item().items()): | ||
if (key[:4] == "conv"): | ||
print(" Loading %s" % (key)) | ||
print(" weights with size %s " % str(val['weights'].shape)) | ||
print(" and biases with size %s " % str(val['biases'].shape)) | ||
params.append(val['weights']) | ||
params.append(val['biases']) | ||
else: | ||
print('No weights in suitable .npy format found for path ', weight_file) | ||
|
||
print('Assigning loaded weights..') | ||
tl.files.assign_params(session, params, network) | ||
|
||
return network | ||
|
||
|
||
# === Layers ================================================================== | ||
|
||
# Convolutional layer | ||
def conv_layer(input_layer, sz, str): | ||
network = tl.layers.Conv2dLayer(input_layer, | ||
act=tf.nn.relu, | ||
shape=[3, 3, sz[0], sz[1]], | ||
strides=[1, 1, 1, 1], | ||
padding='SAME', | ||
name=str) | ||
|
||
return network | ||
|
||
|
||
# Max-pooling layer | ||
def pool_layer(input_layer, str): | ||
network = tl.layers.PoolLayer(input_layer, | ||
ksize=[1, 2, 2, 1], | ||
strides=[1, 2, 2, 1], | ||
padding='SAME', | ||
pool=tf.nn.max_pool, | ||
name=str) | ||
|
||
return network | ||
|
||
|
||
# Concatenating fusion of skip-connections | ||
def skip_connection_layer(input_layer, skip_layer, str, is_training=False): | ||
_, sx, sy, sf = input_layer.outputs.get_shape().as_list() | ||
_, sx_, sy_, sf_ = skip_layer.outputs.get_shape().as_list() | ||
|
||
#assert (sx_, sy_, sf_) == (sx, sy, sf) | ||
|
||
# skip-connection domain transformation, from LDR encoder to log HDR decoder | ||
# skip_layer.outputs = tf.log(tf.pow(tf.scalar_mul(1.0 / 255, skip_layer.outputs), 2.0) + 1.0 / 255.0) | ||
skip_layer.outputs = tf.scalar_mul(1.0 / 255, skip_layer.outputs) | ||
|
||
# specify weights for fusion of concatenation, so that it performs an element-wise addition | ||
weights = np.zeros((1, 1, sf + sf_, sf)) | ||
for i in range(sf): | ||
weights[0, 0, i, i] = 1 | ||
weights[:, :, i + sf_, i] = 1 | ||
add_init = tf.constant_initializer(value=weights, dtype=tf.float32) | ||
|
||
# concatenate layers | ||
network = tl.layers.ConcatLayer([input_layer, skip_layer], concat_dim=3, name='%s/skip_connection' % str) | ||
|
||
# fuse concatenated layers using the specified weights for initialization | ||
network = tl.layers.Conv2dLayer(network, | ||
act=tf.identity, | ||
shape=[1, 1, sf + sf_, sf], | ||
strides=[1, 1, 1, 1], | ||
padding='SAME', | ||
W_init=add_init, | ||
b_init=tf.constant_initializer(value=0.0), | ||
name=str) | ||
|
||
return network | ||
|
||
|
||
# Deconvolution layer | ||
def deconv_layer(input_layer, sz, str, alpha, is_training=False): | ||
scale = 2 | ||
|
||
filter_size = (2 * scale - scale % 2) | ||
num_in_channels = int(sz[3]) | ||
num_out_channels = int(sz[4]) | ||
|
||
network = tl.layers.UpSampling2dLayer(input_layer, (scale, scale), True, 1, False, '%s/NN_dc' % str) | ||
network = tl.layers.PadLayer(network, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT", name='inpad') | ||
# network = conv_layer(network, [num_in_channels, num_out_channels], str) | ||
network = tl.layers.Conv2dLayer(network, | ||
act=tf.nn.relu, | ||
shape=[3, 3, num_in_channels, num_out_channels], | ||
strides=[1, 1, 1, 1], | ||
padding='VALID', | ||
name=str) | ||
|
||
# # create bilinear weights in numpy array | ||
# bilinear_kernel = np.zeros([filter_size, filter_size], dtype=np.float32) | ||
# scale_factor = (filter_size + 1) // 2 | ||
# if filter_size % 2 == 1: | ||
# center = scale_factor - 1 | ||
# else: | ||
# center = scale_factor - 0.5 | ||
# for x in range(filter_size): | ||
# for y in range(filter_size): | ||
# bilinear_kernel[x, y] = (1 - abs(x - center) / scale_factor) * \ | ||
# (1 - abs(y - center) / scale_factor) | ||
# weights = np.zeros((filter_size, filter_size, num_out_channels, num_in_channels)) | ||
# for i in range(num_out_channels): | ||
# weights[:, :, i, i] = bilinear_kernel | ||
# | ||
# init_matrix = tf.constant_initializer(value=weights, dtype=tf.float32) | ||
# | ||
# """network = tl.layers.DeConv2d(input_layer, | ||
# shape=[filter_size, filter_size, num_out_channels, num_in_channels], | ||
# output_shape=[sz[0], sz[1] * scale, sz[2] * scale, num_out_channels], | ||
# strides=[1, scale, scale, 1], | ||
# W_init=init_matrix, | ||
# padding='SAME', | ||
# act=tf.identity, | ||
# name=str)""" | ||
# network = tl.layers.DeConv2d(input_layer, num_out_channels, (filter_size, filter_size), (scale, scale), 'SAME', tf.identity, W_init=init_matrix, name=str) | ||
|
||
network = tl.layers.BatchNormLayer(network, is_train=is_training, name='%s/batch_norm_dc' % str) | ||
network.outputs = tf.maximum(alpha * network.outputs, network.outputs, name='%s/leaky_relu_dc' % str) | ||
|
||
|
||
return network |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.