注意!!!!!!! 这个仓库只是把原stgcn的openpose接口替换为light_openpose,没有对其它代码进行改动,如果你只是训练和测试stgcn那么你并不需要任何openpose接口。
我没有在原demo_offline上进行改动,而是重新整合了一个draft.py文件,如果你想输入视频,那么修改116行的路径为你的路径。如果你想调用摄像头,修改video_path=0(stgcn默认会取第二帧开始的共339帧,超出的部分会裁剪掉,若小于339则会补零,此值可以在processor/demo_offline.py的261行进行修改,大于339没问题,若小于339会报错但是也是可以运行的)。
light_openpose的编译请跟随它的readme(https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch), 依赖要求请查看requirements.txt,注意light_openpose只可以运行在ubuntu下。
你需要下载light_openpose的预训练模型(链接: https://pan.baidu.com/s/11_r2mqBCRPwhN-rANYFLcg 提取码: i2p6), 然后修改draft.py的105行和light_openpose/light_op.py里的12行为你的路径,light_op.py亦为我整合而成,用于返回18个坐标点。
stgcn的配置和原readme一致,修改draft.py的166行为你的st_gcn.kinetics.pt路径。
你只需要运行draft.py就可以运行demo,不需要输入指令。
(请忽略在运行过程中出现的除窗口外一切输出,那是我在测试时候写的,懒得删了(诶嘿)) 有问题请提出。 完整毕设链接 https://github.com/Tudouu/Pose-STTRan
以下为原readme!!!!!
ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You are welcome to migrate to new MMSkeleton. Custom networks, data loaders and checkpoints of old st-gcn are compatible with MMSkeleton. If you want to use old ST-GCN, please refer to OLD_README.md.
This code base will soon be not maintained and exists as a historical artifact to supplement our AAAI papers on:
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition, Sijie Yan, Yuanjun Xiong and Dahua Lin, AAAI 2018. [Arxiv Preprint]
For more recent works please checkout MMSkeleton.