-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpar_autobss.m
379 lines (333 loc) · 12.5 KB
/
par_autobss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
function [dataOut] = par_autobss(dataIn, opt)
% autobss() - Performs automatic EOG artifact correction using Blind Source
% Separation (BSS) and identifying the EOG components using fractal analysis
%
% Usage:
% >> Y = autobss( X, opt)
%
% Inputs:
% X - Input data matrix, d x L
% opt.wl - Length of the moving-ICA analysis windows (in samples).
% If empty it will be set to the data length L.
% default: L
% opt.ws - Shift between correlative windows (in samples). If
% empty it will be set to the same value as wl.
% default: wl
% opt.wl_dim - window length (in samples) for the moving window
% computation of the fractal dimension
% default: .1*opt.wl
% opt.ws_dim - window shift (in samples) for the moving window
% computation of the fractal dimension
% default: opt.wl_dim
% opt.bss_alg - BSS algorithm to use
% default 'sobi'
% opt.bss_opt - Options to pass to the BSS algorithm
% default: []
% opt.crit_alg - criterion to use for detecting the EOG components
% ('fd','svf','joyce'), default: 'fd'
% opt.crit_opt - options to pass to the criterion function
% default: []
% opt.tau - embedding lag for computing the 'svf' criterion
% default: 1
% opt.dim - embedding dimension for computing the 'svf' criterion
% default: 20
% opt.k - index of the SVF for the 'svf' criterion
% default: 1
% opt.eogindex - indexes of the EOG channels. Necessary for computing
% 'joyce' criterion.
% default: last data channel
%
% Outputs:
% Y - Output data matrix (artifact corrected)
%
% Notes:
% 1) BSS will be performed on (possibly overlapping) windows of wl
% samples.
% 2) The EOG components are detected as described in [3]. Please refer to
% [3] when using this code in any of your publications.
% 3) Reconciling ovelapping analysis windows is done as in [1].
% 4) Available BSS algorithms should have an associated interface
% function named [cmd]_ifc where [cmd] is the command name used to run
% the BSS. A sample interface to sobi (named sobi_ifc) is included in
% folder bss_alg.
% 5) The SVF criterion is described in [4] (not implemented yet!).
% 6) The Joyce criterion is described in [5] (not implemented yet!).
%
% References:
% [1] Wallstrom et al., G.L. International Journal of Psychology 53 (2004)
% 105-119
% [2] Katz, M., Comput. Biol. Med. 18 (1988), 145-156
% [3] Gomez-Herrero, G. , De Clercq, W., Anwar, H., Kara, O., Egiazarian, K. (2006),
% Proceedings of NORSIG 2006, Reykjavik, Iceland.
% [4] Faul, S., Marnane, L., Lightbody, G., Boylan, G. and Connolly, S. (2005),
% Proceedings of ICASSP 2005, Philadelphia, USA.
% [5] Joyce, C. A., Gorodnitsky, I.F., Kutas, M. (2004), Psychophysiology,
% 41, 313-325
%
%
% Author: German Gomez-Herrero <[email protected]>
% Institute of Signal Processing
% Tampere University of Technology, 2007
%
% See also:
% POP_AUTOBSSEOG, POP_AUTOBSSEMG, CMERGE_OVERLAP, CMERGE_NOOVERLAP, FD, EEGLAB
%
% Copyright (C) <2007> German Gomez-Herrero, http://germangh.com
if nargin < 1, help autoica; return; end
if ~exist('opt','var')
opt = def_autobss;
else
opt = def_autobss(opt);
end
bss_alg = lower(opt.bss_alg);
ws = opt.ws;
wl = opt.wl;
% Initial and final sample of each analysis epoch
% ----------------------------------------
[d,L] = size(dataIn);
if isempty(wl)
wl = L; ws=L;
elseif isempty(ws)
ws = wl;
end
% overlap between correlative samples
% -----------------------------------------
ovlength = wl-ws;
init = 1:ws:L;
final = init+wl-1;
samples = length(init);
% initialize the output (corrected)data
% ----------------------------------------
dataOut = zeros(d,L);
% reference EOG channels data
% ----------------------------------------
if isfield(opt.crit_opt,'eogref')
eogref = opt.crit_opt.eogref;
else
eogref = [];
end
finals = cell(1, samples); % Pre-allocate cell array for performance
[finals{:}] = deal(final); % Distribute 'final' to all elements of 'finals'
%finals{samples} = deal(final);
% repositioning of OG code; remove excess samples
for i = 1:samples
final1 = finals(i);
final1 = final1{:};
if final1(i)>L
if (final1(i)-L)>.5*wl
samples=i-1;
%warning('Last analysis window is too short and therefore will not be processed');
break;
else
final1(i)=L;
if i < samples
final1(i+1) = Inf;
end
end
end
finals{i} = final1;
end
% assigning all variables before loop starts
X{samples} = deal(dataIn);
Xi{samples} = deal([]);
Yis{samples} = deal([]);
Ais{samples} = deal([]);
Wis{samples} = deal([]);
finals{samples} = deal(final);
dataOuts{samples} = deal(dataOut);
index{samples} = deal([]);
opts{samples} = deal(opt);
Ximeans{samples} = deal([]);
thisYs{samples} = deal([]);
thisXs{samples} = deal([]);
EOGs{samples} = deal([]);
if opt.verbose,fprintf('\nRunning BSS filter in sliding windows in PAR');end
%% TEST IF HAS PAR
% RUN IF STATEMENT if par etc.
parfor i = 1:samples
X = dataIn;
final = finals{i};
dataOuti = dataOut;
Xi{i} = X(:,init(i):final(i));
% remove data mean
Ximean = mean(Xi{i},2);
Xi{i} = Xi{i}-repmat(Ximean,1,size(Xi{i},2));
if ~isempty(eogref)
eogrefi = eogref(:,init(i):final(i));
opts(i).crit_opt.eogref = eogrefi;
end
if isfield(opt,'bss_opt') && ~isempty(opt.bss_opt)
%F = str2fun( strcat( bss_alg ,'_ifc(', DataIni(i), opt.bss_opt));
% Convert function name string to a function handle
bss_func_handle = str2func([bss_alg '_ifc']);
% Run the function using feval
Wi = feval(bss_func_handle, Xi{i}, opt.bss_opt);
%[Wi] = feval([bss_alg '_ifc(Xi{i},opt.bss_opt)']);
Wi = real(Wi);
else
% Convert function name string to a function handle
bss_func_handle = str2func([bss_alg '_ifc']);
% Run the function using feval
Wi = feval(bss_func_handle, Xi{i});
%[Wi] = feval([bss_alg '_ifc(Xi{i})']);
Wi = real(Wi);
end
if ~isempty(Wi)
Ai = pinv(Wi);
Yi = Wi*Xi{i};
else
Ai = [];
Yi = [];
end
% detect the EOG-related components
switch lower(opt.crit_alg)
case 'eog_fd' % fractal dimension
[index{i}] = eog_fd(Yi,opt.crit_opt);
case 'eog_corr' % EOG correlation
[index{i}] = eog_corr(Yi,opt.crit_opt);
case 'emg_psd' % PSD ratio EEGband/EMGband
[index{i}] = emg_psd(Yi,opt.crit_opt);
case 'eog_svf' % singular value fraction
error('(par_autobss) criterion eog_svf not working yet. Try fd instead.')
case 'eog_joyce' % joyce criterion
error('(par_autobss) criterion eog_joyce not working yet. Try eog_fd instead.')
end
% correct the EOG (avoiding unnecessary operations and rounding errors)
if wl>ws
% if there is overlap between correlative analysis windows
if isempty(index{i}) % leave the data unchanged
thisY = X(:,init(i):final(i));
elseif length(index{i})<d % remove just some components
EOG = real(Ai(:,index{i})*Yi(index{i},:));
thisY = (Xi{i}-EOG)+repmat(Ximean,1,size(Xi{i},2));
else % remove all data
thisY = zeros(d,wl);
end
if i < 2
dataOuti(:,1:final(1))=thisY;
else
dataOuti(:,1:final(i)) = cmerge_overlap(dataOuti(:,1:final(i-1)),thisY,ovlength);
end
else
% if there is no overlap
if isempty(index{i}) % leave the data unchanged
dataOuti(:,init(i):final(i)) = X(:,init(i):final(i));
elseif length(index{i})<d % remove just some components
EOG = real(Ai(:,index{i})*Yi(index{i},:));
dataOuti(:,init(i):final(i)) = (Xi{i}-EOG)+repmat(Ximean,1,size(Xi{i},2));
end
end
% redistribute outputs
Ais{i} = Ai; Yis{i} = Yi; Wis{i} = Wi; try thisYs{i} = thisY; catch; end;
dataOuts{i} = dataOuti; % save the output
Ximeans{i} = Ximean;
if opt.verbose && ~mod(i,floor(samples/10)), fprintf('.'); end
end % end of parfor loop
% merge all samples
if opt.verbose,fprintf('\nDone.\n');end
% leave the remaining data unchanged
if final(samples)<L
dataOut(:,final(samples)+1:end) = dataIn(:,final(samples)+1:end);
end
function [opt] = def_autobss(opt)
% def_autobss() - Sets default analysis parameters for autobss()
%
% Usage:
% [opt] = def_autobss(opt_in)
%
% Inputs:
% opt_in - Input structure containing analysis options
%
% Outputs:
% opt - Output structure where all the analysis options not specified
% in opt_in have been set to their default values. The possible
% analysis options are:
% opt.wl - Length (in samples) of the analysis windows. If left
% empty it will be set to the data length.
% (default: [])
% opt.ws - Shift (in samples) between correlative analysis
% windows. If empty, the same value as wl will be
% assumed.
% (default: [])
% opt.wl_dim - Length (in samples) of the analysis windows used for
% estimating the mean fractal dimension.
% (default: [])
% opt.ws_dim - Shift (in samples) between correlative windows used for
% estimating the mean fractal dimension.
% (default: [])
% opt.bss_alg - BSS algorithm to use (default: 'sobi')
% opt.bss_opt - BSS options (default: [])
% opt.crit_alg - criterion to use for identifying the components to be
% removed. The following are available:
% 'eog_fd','eog_corr' -> good for removing EOG
% 'emg_psd' -> good for removing EMG
% default: 'eog_fd'
% opt.crit_opt - Criterion options (default: [])
% opt.tau - embedding lag for computing the 'svf' criterion,
% default: 1
% opt.dim - embedding dimension for computing the 'svf' criterion
% default: 20
% opt.k - index of the SVF for the 'svf' criterion
% default: 1
% opt.eogindex - indexes of the EOG channels. Necessary for computing
% some of the criteria.
% default: []
%
% Author: German Gomez-Herrero <[email protected]>
% Institute of Signal Processing
% Tampere University of Technology, 2006
%
% See also:
% POP_AUTOBSS, CMERGE_OVERLAP, CMERGE_NOOVERLAP, FD, EEGLAB
%
% Copyright (C) <2006> <German Gomez-Herrero>
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
if ~exist('opt','var') || ~isfield(opt, 'ws'),
opt.ws = [];
end
if ~isfield(opt, 'wl'),
opt.wl = [];
end
if ~isfield(opt, 'wl_dim'),
opt.wl_dim = [];
end
if ~isfield(opt, 'ws_dim'),
opt.ws_dim = [];
end
if ~isfield(opt, 'crit_alg') || isempty(opt.crit_alg),
opt.crit_alg = 'eog_fd';
end
if ~isfield(opt, 'crit_opt') || isempty(opt.crit_opt),
opt.crit_opt = [];
end
if ~isfield(opt, 'tau') || isempty(opt.tau),
opt.tau = 1;
end
if ~isfield(opt, 'dim') || isempty(opt.dim),
opt.dim = 20;
end
if ~isfield(opt,'k') || isempty(opt.k),
opt.k = 1;
end
if ~isfield(opt, 'verbose') || isempty(opt.verbose),
opt.verbose = 1;
end
if ~isfield(opt,'bss_alg') || isempty(opt.bss_alg),
opt.bss_alg = 'sobi';
end
if ~isfield(opt,'bss_opt') || isempty(opt.bss_opt),
opt.bss_opt = [];
end