Skip to content

UnicomAI/UniT2IXL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UniT2IXL

Hugging Face  ModelScope   WiseModel


📖 介绍

UniT2IXL是由中国联通AI创新中心团队开发的一款基于潜在扩散的大规模文本到图像生成模型。该模型改进了SDXL的编码器,采用中文CLIP实现对原生中文的支持,并引入mt5架构提升对长文本的理解能力。在国产昇腾AI基础软硬件平台实现了模型从微调训练到推理的一体化适配

🚀 快速开始

环境依赖

  • Python 3.8 or later
  • PyTorch 2.4.0 or later
  • Transformers 4.43.3 or later
  • Diffusers 0.31.0
  • Recommended: CUDA 11.7 or later

  1. 快速安装
git clone https://github.com/UnicomAI/UniT2IXL.git
cd UniT2IXL
conda create -n unit2i python=3.10
conda activate unit2ixl
cd unit2ixl
pip install -r requirements.txt
  1. 权重下载(link):
huggingface-cli download --resume-download UnicomAI/UniT2IXL
  1. 推理demo.py
from piepline_unit2ixl import UniT2IXLPipeline
pipeline = UniT2IXLPipeline.from_pretrained("UnicomAI/UniT2IXL")
pipeline = pipeline.to("cuda:0")
prompt = "在绿色的森林中,隐藏着一座白色的哥特式教堂,教堂的尖塔直指蓝色的天空,教堂周围是五彩斑斓的野花和浅黄色的草坪。"
image = pipeline(prompt=prompt,guidance_scale=7.5,target_size=(1024,1024)).images[0]

训练

我们提供训练LoRA模型,使用DeepSpeed! 支持1024x1024分辨率

准备数据

参考这里

  • 数据结构

    folder/train/metadata.csv
    folder/train/0001.png
    folder/train/0002.png
    folder/train/0003.png
    
  • 图像标注 metadata.csv:

    file_name,text
    0001.png,This is a golden retriever playing with a ball
    0002.png,A german shepherd
    0003.png,One chihuahua
    

deepspeed配置样例

compute_environment: LOCAL_MACHINE
debug: true
deepspeed_config:
  deepspeed_multinode_launcher: standard
  gradient_accumulation_steps: 1
  gradient_clipping: 1.0
  offload_optimizer_device: none
  offload_param_device: none
  zero3_init_flag: false
  zero_stage: 2
  train_micro_batch_size_per_gpu: 6
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_training_function: main
mixed_precision: 'no'
num_machines: 1
num_processes: 1
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

Lora

export MODEL_NAME="UnicomAI/UniT2IXL"
export DATASET_NAME="lambdalabs/naruto-blip-captions"
export ACCELERATE_CONFIG_FILE="ac.yaml"
export CUDA_VISIBLE_DEVICES=0
accelerate launch --config_file $ACCELERATE_CONFIG_FILE  --main_process_port 12345 train_text_to_image_lora_unit2ixl.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --caption_column="text" \
  --resolution=1024 --random_flip \
  --train_batch_size=4 \
  --num_train_epochs=200 --checkpointing_steps=1000 \
  --validation_epochs=10 \
  --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \
  --seed=42 \
  --rank=8 \
  --output_dir="sd-papercut-model-lora-sdxl" \
  --validation_prompt="一个龙的窗花" \
  --noise_offset=0.1 \
  --dataset_name=$DATASET_NAME

💻UniT2IXL-NPU

我们也提供了可以在NPU上运行UniT2I的LoRA训练与推理代码。更多详细信息,请参阅unit2ixl-npu

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published