forked from lucidrains/vit-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add ViT for small datasets https://arxiv.org/abs/2112.13492
- Loading branch information
1 parent
e52ac41
commit 70ba532
Showing
5 changed files
with
206 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
from math import sqrt | ||
import torch | ||
import torch.nn.functional as F | ||
from torch import nn | ||
|
||
from einops import rearrange, repeat | ||
from einops.layers.torch import Rearrange | ||
|
||
# helpers | ||
|
||
def pair(t): | ||
return t if isinstance(t, tuple) else (t, t) | ||
|
||
# classes | ||
|
||
class PreNorm(nn.Module): | ||
def __init__(self, dim, fn): | ||
super().__init__() | ||
self.norm = nn.LayerNorm(dim) | ||
self.fn = fn | ||
def forward(self, x, **kwargs): | ||
return self.fn(self.norm(x), **kwargs) | ||
|
||
class FeedForward(nn.Module): | ||
def __init__(self, dim, hidden_dim, dropout = 0.): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Dropout(dropout), | ||
nn.Linear(hidden_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
class LSA(nn.Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
self.heads = heads | ||
self.temperature = nn.Parameter(torch.log(torch.tensor(dim_head ** -0.5))) | ||
|
||
self.attend = nn.Softmax(dim = -1) | ||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | ||
|
||
self.to_out = nn.Sequential( | ||
nn.Linear(inner_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
|
||
def forward(self, x): | ||
qkv = self.to_qkv(x).chunk(3, dim = -1) | ||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | ||
|
||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.temperature.exp() | ||
|
||
mask = torch.eye(dots.shape[-1], device = dots.device, dtype = torch.bool) | ||
mask_value = -torch.finfo(dots.dtype).max | ||
dots = dots.masked_fill(mask, mask_value) | ||
|
||
attn = self.attend(dots) | ||
|
||
out = torch.matmul(attn, v) | ||
out = rearrange(out, 'b h n d -> b n (h d)') | ||
return self.to_out(out) | ||
|
||
class Transformer(nn.Module): | ||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): | ||
super().__init__() | ||
self.layers = nn.ModuleList([]) | ||
for _ in range(depth): | ||
self.layers.append(nn.ModuleList([ | ||
PreNorm(dim, LSA(dim, heads = heads, dim_head = dim_head, dropout = dropout)), | ||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) | ||
])) | ||
def forward(self, x): | ||
for attn, ff in self.layers: | ||
x = attn(x) + x | ||
x = ff(x) + x | ||
return x | ||
|
||
class SPT(nn.Module): | ||
def __init__(self, *, dim, patch_size, channels = 3): | ||
super().__init__() | ||
patch_dim = patch_size * patch_size * 5 * channels | ||
|
||
self.to_patch_tokens = nn.Sequential( | ||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), | ||
nn.LayerNorm(patch_dim), | ||
nn.Linear(patch_dim, dim) | ||
) | ||
|
||
def forward(self, x): | ||
shifts = ((1, -1, 0, 0), (-1, 1, 0, 0), (0, 0, 1, -1), (0, 0, -1, 1)) | ||
shifted_x = list(map(lambda shift: F.pad(x, shift), shifts)) | ||
x_with_shifts = torch.cat((x, *shifted_x), dim = 1) | ||
return self.to_patch_tokens(x_with_shifts) | ||
|
||
class ViT(nn.Module): | ||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): | ||
super().__init__() | ||
image_height, image_width = pair(image_size) | ||
patch_height, patch_width = pair(patch_size) | ||
|
||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | ||
|
||
num_patches = (image_height // patch_height) * (image_width // patch_width) | ||
patch_dim = channels * patch_height * patch_width | ||
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' | ||
|
||
self.to_patch_embedding = SPT(dim = dim, patch_size = patch_size, channels = channels) | ||
|
||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) | ||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) | ||
self.dropout = nn.Dropout(emb_dropout) | ||
|
||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) | ||
|
||
self.pool = pool | ||
self.to_latent = nn.Identity() | ||
|
||
self.mlp_head = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, num_classes) | ||
) | ||
|
||
def forward(self, img): | ||
x = self.to_patch_embedding(img) | ||
b, n, _ = x.shape | ||
|
||
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) | ||
x = torch.cat((cls_tokens, x), dim=1) | ||
x += self.pos_embedding[:, :(n + 1)] | ||
x = self.dropout(x) | ||
|
||
x = self.transformer(x) | ||
|
||
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] | ||
|
||
x = self.to_latent(x) | ||
return self.mlp_head(x) |