forked from ReciHub/FunnyAlgorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request ReciHub#372 from sumitesh9/patch-3
Created BellmanFord.java
- Loading branch information
Showing
1 changed file
with
133 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
// A Java program for Bellman-Ford's single source shortest path | ||
// algorithm. | ||
import java.util.*; | ||
import java.lang.*; | ||
import java.io.*; | ||
|
||
// A class to represent a connected, directed and weighted graph | ||
class Graph { | ||
// A class to represent a weighted edge in graph | ||
class Edge { | ||
int src, dest, weight; | ||
Edge() | ||
{ | ||
src = dest = weight = 0; | ||
} | ||
}; | ||
|
||
int V, E; | ||
Edge edge[]; | ||
|
||
// Creates a graph with V vertices and E edges | ||
Graph(int v, int e) | ||
{ | ||
V = v; | ||
E = e; | ||
edge = new Edge[e]; | ||
for (int i = 0; i < e; ++i) | ||
edge[i] = new Edge(); | ||
} | ||
|
||
// The main function that finds shortest distances from src | ||
// to all other vertices using Bellman-Ford algorithm. The | ||
// function also detects negative weight cycle | ||
void BellmanFord(Graph graph, int src) | ||
{ | ||
int V = graph.V, E = graph.E; | ||
int dist[] = new int[V]; | ||
|
||
// Step 1: Initialize distances from src to all other | ||
// vertices as INFINITE | ||
for (int i = 0; i < V; ++i) | ||
dist[i] = Integer.MAX_VALUE; | ||
dist[src] = 0; | ||
|
||
// Step 2: Relax all edges |V| - 1 times. A simple | ||
// shortest path from src to any other vertex can | ||
// have at-most |V| - 1 edges | ||
for (int i = 1; i < V; ++i) { | ||
for (int j = 0; j < E; ++j) { | ||
int u = graph.edge[j].src; | ||
int v = graph.edge[j].dest; | ||
int weight = graph.edge[j].weight; | ||
if (dist[u] != Integer.MAX_VALUE && dist[u] + weight < dist[v]) | ||
dist[v] = dist[u] + weight; | ||
} | ||
} | ||
|
||
// Step 3: check for negative-weight cycles. The above | ||
// step guarantees shortest distances if graph doesn't | ||
// contain negative weight cycle. If we get a shorter | ||
// path, then there is a cycle. | ||
for (int j = 0; j < E; ++j) { | ||
int u = graph.edge[j].src; | ||
int v = graph.edge[j].dest; | ||
int weight = graph.edge[j].weight; | ||
if (dist[u] != Integer.MAX_VALUE && dist[u] + weight < dist[v]) { | ||
System.out.println("Graph contains negative weight cycle"); | ||
return; | ||
} | ||
} | ||
printArr(dist, V); | ||
} | ||
|
||
// A utility function used to print the solution | ||
void printArr(int dist[], int V) | ||
{ | ||
System.out.println("Vertex Distance from Source"); | ||
for (int i = 0; i < V; ++i) | ||
System.out.println(i + "\t\t" + dist[i]); | ||
} | ||
|
||
// Driver method to test above function | ||
public static void main(String[] args) | ||
{ | ||
int V = 5; // Number of vertices in graph | ||
int E = 8; // Number of edges in graph | ||
|
||
Graph graph = new Graph(V, E); | ||
|
||
// add edge 0-1 (or A-B in above figure) | ||
graph.edge[0].src = 0; | ||
graph.edge[0].dest = 1; | ||
graph.edge[0].weight = -1; | ||
|
||
// add edge 0-2 (or A-C in above figure) | ||
graph.edge[1].src = 0; | ||
graph.edge[1].dest = 2; | ||
graph.edge[1].weight = 4; | ||
|
||
// add edge 1-2 (or B-C in above figure) | ||
graph.edge[2].src = 1; | ||
graph.edge[2].dest = 2; | ||
graph.edge[2].weight = 3; | ||
|
||
// add edge 1-3 (or B-D in above figure) | ||
graph.edge[3].src = 1; | ||
graph.edge[3].dest = 3; | ||
graph.edge[3].weight = 2; | ||
|
||
// add edge 1-4 (or A-E in above figure) | ||
graph.edge[4].src = 1; | ||
graph.edge[4].dest = 4; | ||
graph.edge[4].weight = 2; | ||
|
||
// add edge 3-2 (or D-C in above figure) | ||
graph.edge[5].src = 3; | ||
graph.edge[5].dest = 2; | ||
graph.edge[5].weight = 5; | ||
|
||
// add edge 3-1 (or D-B in above figure) | ||
graph.edge[6].src = 3; | ||
graph.edge[6].dest = 1; | ||
graph.edge[6].weight = 1; | ||
|
||
// add edge 4-3 (or E-D in above figure) | ||
graph.edge[7].src = 4; | ||
graph.edge[7].dest = 3; | ||
graph.edge[7].weight = -3; | ||
|
||
graph.BellmanFord(graph, 0); | ||
} | ||
} | ||
// Contributed by Aakash Hasija |