forked from ducciopiovani/FamPredAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm.py
292 lines (239 loc) · 11.1 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
from typing import Union, List, Optional
import pandas as pd
from datetime import datetime, timedelta
from keras import Model
from keras.models import Sequential
from keras.callbacks import EarlyStopping
from keras.layers import LSTM, Input, Dense, RepeatVector, TimeDistributed
from keras.optimizers import Adam
from sklearn.preprocessing import MinMaxScaler
from utilities import smooth_past_data, shuffle_io, merge_predictions_and_rtm, feature_dict
import numpy as np
from time import time
import tensorflow_addons as tfa
class LSTMModel():
def __init__(self,
country: str,
forecasting_window: int,
hyperparameters: dict,
time_granularity: Optional[str] = 'D',
target_name: Optional[str] = 'FCS'
):
self.country = country
# forecasting parameters
admin_info = pd.read_csv("data/adm1_list.csv")
admin_info = admin_info[admin_info['adm0_name'] == country]
self.adm1_list = admin_info['adm1_code'].to_list()
self.adm1_name = admin_info[['adm1_code', 'adm1_name']].set_index('adm1_code').to_dict()['adm1_name']
self.country_id = admin_info.adm0_code.unique()[0]
self.target_name = target_name
self.time_granularity = time_granularity
self.hyperparameters = hyperparameters
self.forecasting_window = forecasting_window
self.train_start_date = None
self.train_end_date = None
# the data coming from FeatureGenerator
self.input_data = None
# Objects from training and testing
self.x_train = None
self.y_train = None
self.x_pred = None
self.training_data = () # tuple that will store input/output data
# storing predictions
self.predictions = []
# Deep Learning Architecture
self.n_output = None
self.n_features = None
self.n_output_internal = None
self.model = None
self.scaling = True
def load_data_from_file(self,
train_end_date: datetime,
train_start_date: Optional[datetime] = None,
):
hp = self.hyperparameters
path = f"data/{self.country}/full_timeseries_daily.csv"
data = pd.read_csv(path, header=[0, 1], index_col=0)
features = [f for f in feature_dict[hp['features']] if f in data.columns]
data = data[features]
data.index = pd.to_datetime(data.index)
self.input_data = data.loc[train_start_date:train_end_date].copy()
self.train_end_date = train_end_date
self.train_start_date = train_start_date
@staticmethod
def _smooth_data(data: pd.DataFrame, delta_t: int = 10,
leave_out_columns: Optional[List] = None) -> pd.DataFrame:
"""
:param data:
:param delta_t:
:return:
"""
if leave_out_columns is None:
leave_out_columns = []
new_data = pd.DataFrame(index=data.index)
for col in data.columns:
if col in leave_out_columns:
new_data[col] = np.array(data[col])
else:
new_data[col] = smooth_past_data(np.array(data[col]), delta_t=delta_t)
new_data.columns = pd.MultiIndex.from_tuples(new_data.columns, names=['Level1', 'Level2'])
return new_data
def prepare_data(self):
data = self.input_data.copy()
target = data[self.target_name].copy()
self.target_columns = target.columns
hp = self.hyperparameters
if hp['smoothing'] is not None:
data = self._smooth_data(data, delta_t=hp['smoothing'])
if hp['differencing']:
# differencing the target
self.seed_value = np.array(target.iloc[-1, :].copy())
target = target.diff().dropna()
# differencing the target value in the features
data[self.target_name] = data[self.target_name].diff()
if 'rCSI' in data:
data['rCSI'] = data['rCSI'].diff()
data = data.iloc[1:, :]
target = np.array(target)
if self.scaling:
scaler = MinMaxScaler(feature_range=(0, 1))
features = data.loc[:, data.columns.get_level_values(0) != self.target_name]
# Scale all features
if features.shape[1] > 0:
scaled_features = scaler.fit_transform(features)
data.loc[:, features.columns] = scaled_features
# Scale the target only if it has been differenced
if hp['differencing']:
# Scale the target's past values (feature) and future values (target)
self.target_scaler = MinMaxScaler(feature_range=(0, 1))
scaled_target = self.target_scaler.fit_transform(
data.loc[:, data.columns.get_level_values(0) == self.target_name])
data.loc[:, data.columns.get_level_values(0) == self.target_name] = scaled_target
target = self.target_scaler.transform(target)
sequences = np.array(data)
input_data = []
output_data = []
# Prepare the input / output structure
for i in range(len(sequences)):
# find the end of this pattern
end_ix = i + hp["n_steps_in"]
out_end_ix = end_ix + self.forecasting_window
# check if we are beyond the dataset
if out_end_ix > len(sequences):
break
# gather input and output parts of the pattern
input_data.append(sequences[i:end_ix, :])
output_data.append(target[end_ix:out_end_ix, :])
self.x_train = np.array(input_data)
self.y_train = np.array(output_data)
self.training_data = shuffle_io((self.x_train, self.y_train))
self.x_pred = np.array([sequences[-hp['n_steps_in']:, :]])
def define_model(self):
self.set_n_output()
np.random.seed(0)
hp = self.hyperparameters
print(hp)
if hp["simple"] == False:
# define model vs 1
model = Sequential()
model.add(LSTM(hp['units'], activation='relu', dropout=hp["dropout"], recurrent_dropout=hp["dropout"],
input_shape=(hp["n_steps_in"], self.n_features)))
model.add(RepeatVector(self.forecasting_window))
model.add(LSTM(hp["units"], activation='relu', dropout=hp["dropout"], recurrent_dropout=hp["dropout"],
return_sequences=True))
model.add(TimeDistributed(Dense(self.n_output)))
model.compile(optimizer=Adam(learning_rate=hp["learning_rate"]), loss='mse')
else:
# define model vs 2
inputs = Input(shape=(hp["n_steps_in"], self.n_features))
if hp['dropout'] > 0:
lstm_out = LSTM(hp["units"],
dropout=hp["dropout"],
recurrent_dropout=hp["dropout"],
return_sequences=True)(inputs)
else:
LSTM(hp["units"], return_sequences=True)(inputs)
outputs = TimeDistributed(Dense(self.n_output))(lstm_out)
model = Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=Adam(learning_rate=hp["learning_rate"]), loss='mse')
self.model = model
def train(self, verbose=False):
hp = self.hyperparameters
np.random.seed(0)
X = self.training_data[0]
y = self.training_data[1]
callbacks = []
timeStopping = tfa.callbacks.TimeStopping(seconds=1800, verbose=1)
callbacks.append(timeStopping)
if hp["early_stopping"]:
earlyStopCallBack = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
callbacks.append(earlyStopCallBack)
# fit model
t0 = time()
self.history = self.model.fit(X, y, validation_split=0.2,
epochs=hp["epochs"],
verbose=verbose,
callbacks=callbacks)
t1 = time()
print(f"training took a total of {t1-t0} seconds")
def set_n_output(self):
training_target = self.training_data[1]
training_input = self.training_data[0]
n_output = training_target.shape[2]
self.n_output = n_output
self.n_features = training_input.shape[2]
def predict(self):
pred = self.model.predict(self.x_pred, verbose=False)
pred = pred.reshape(self.x_pred.shape[0], self.forecasting_window, self.n_output)
pred = pred[0] # There is only one prediction
if self.hyperparameters["differencing"]:
# The inverse transform is only applied if the target has
# been differences
pred = self.target_scaler.inverse_transform(pred)
pred = np.cumsum(pred, axis=0) + self.seed_value
self.predictions = pd.DataFrame(pred, columns=self.target_columns)
return self.predictions
def forecast_from_file(country: str, forecasting_window: int):
hyperparameters = pd.read_csv(f"best_hyperparameters/HP_LSTM_{country}.csv")
date_list = []
for file in os.listdir('forecasts/LSTM'):
if country in file:
df = pd.read_csv('forecasts/LSTM/'+file)
print(df.shape, file)
if df.shape[0] == 0:
date_list.append(file.split("_")[1].replace(".csv", ""))
for ind, row in hyperparameters.iterrows():
#if row['split_date'] in date_list:
print(row['split_date'])
hp = row[["units",
"learning_rate",
"n_steps_in",
"early_stopping",
"smoothing",
"simple",
"dropout",
"epochs",
"differencing",
"features"]].to_dict()
train_end_date = datetime.strptime(row['split_date'], "%Y-%m-%d") - timedelta(days=1)
predictions = pd.DataFrame()
while predictions.shape[0] ==0:
lstm = LSTMModel(hyperparameters=hp, country=country, forecasting_window=forecasting_window)
lstm.load_data_from_file(train_start_date=datetime(2017, 1, 1),
train_end_date=train_end_date)
lstm.prepare_data()
lstm.define_model()
lstm.train(verbose=True)
dates = pd.date_range(start=train_end_date+timedelta(days=1),
end=train_end_date+timedelta(days=forecasting_window))
predictions = lstm.predict()
predictions['date'] = pd.to_datetime(dates)
predictions = predictions.melt(id_vars='date').rename(columns={'variable': 'adm1_code',
'value': 'prediction'})
predictions = merge_predictions_and_rtm(country=country,
preds=predictions)
predictions.to_csv(f"forecasts/LSTM/{country}_{row['split_date']}.csv")
return predictions
if __name__ =='__main__':
forecast_from_file(country='Syria', forecasting_window=60)