-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d40b8ff
commit 794ceca
Showing
55 changed files
with
131,710 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
import torch | ||
import torch.nn as nn | ||
from torch.nn import init | ||
import torch.nn.functional as F | ||
from torch.autograd import Variable | ||
from torch.nn.parameter import Parameter | ||
import torchvision | ||
import resnet as resnet | ||
import pdb | ||
import numpy as np | ||
''' | ||
Feature_Extractor | ||
''' | ||
class WH_ACE(nn.Module): | ||
def __init__(self): | ||
super(WH_ACE, self).__init__() | ||
def forward(self, dense_pred, target): | ||
dense_prob = torch.softmax(dense_pred, dim = 2) | ||
nB = target.size(0) | ||
nClass = dense_prob.size(-1) | ||
hollow_params = [] | ||
target_wasserstein = torch.zeros(nB, nClass).type_as(dense_prob.data).float() | ||
for i in range(0, nB): | ||
hollow_param = torch.ones(nClass).type_as(dense_prob.data).float() | ||
hollow_param[0] = 0 | ||
tt = target[i].tolist() | ||
for j in range(0, len(tt)): | ||
if tt[j] == 0: | ||
break | ||
hollow_param[tt[j]] = 0 | ||
hollow_params.append(hollow_param) | ||
hollow_params = torch.stack(hollow_params, dim = 0) | ||
dense_prob = dense_prob.sum(0) | ||
# pdb.set_trace() | ||
whace_loss = (dense_prob * hollow_params).mean() | ||
return whace_loss | ||
|
||
class CTC(nn.Module): | ||
def __init__(self): | ||
super(CTC, self).__init__() | ||
self.criterion = nn.CTCLoss(reduction='none', zero_infinity=True) | ||
def forward(self, input, label): | ||
batch_size, total_len = label.size() | ||
label_len = np.zeros(batch_size) | ||
label_seq = [] | ||
label_total = 0; | ||
for bn in range(batch_size): | ||
for tn in range(total_len): | ||
if label[bn][tn] != -1: | ||
label_len[bn] = label_len[bn]+1 | ||
label_total += 1 | ||
label_seq.append(int(label[bn][tn])+1) | ||
label_seq = np.array(label_seq) | ||
label_len = Variable(torch.from_numpy(label_len).type(torch.IntTensor), requires_grad=False) | ||
label = Variable(torch.from_numpy(label_seq).type(torch.IntTensor), requires_grad=False) | ||
probs_sizes = Variable(torch.IntTensor([input.size(0)]*batch_size), requires_grad=False) | ||
torch.backends.cudnn.enabled = False | ||
loss = self.criterion(input.log_softmax(2), label.cuda(), probs_sizes, label_len).mean()/total_len | ||
torch.backends.cudnn.enabled = True | ||
return loss | ||
|
||
class SqueezeNet(nn.Module): | ||
# Also known as Column Attention or Weighted Collapse or whatever else. | ||
# The core idea is emphasizing the character features on each column with softmax function. | ||
# Concentrate loss: making the attention map closer to one-hot. | ||
def __init__(self, in_size): | ||
super(SqueezeNet, self).__init__() | ||
self.f2map = nn.Conv2d(in_size, 1, 3, 1, 1) | ||
self.bn = nn.BatchNorm2d(1) | ||
def forward(self, input, temperature=1): | ||
squeezemap = F.relu(self.bn(self.f2map(input))) | ||
concentrate_loss = 1 / squeezemap.var(2).mean() | ||
squeezemap = F.softmax(squeezemap/temperature, 2) | ||
output = torch.sum(input*squeezemap, 2) | ||
return output, squeezemap, concentrate_loss | ||
|
||
class ExCTC(nn.Module): | ||
def __init__(self, nClass): | ||
super(ExCTC, self).__init__() | ||
self.F = resnet.resnet18() | ||
self.S = SqueezeNet(512) | ||
self.C = nn.Linear(512, nClass) | ||
self.WH_ACE = WH_ACE() | ||
self.CTC = CTC() | ||
def forward(self, input, label, temperature=1, IFA_inference=False): | ||
# IFA_inference: set as True for full-page inference | ||
if not IFA_inference: | ||
features = self.F(input) | ||
features = F.dropout(features, 0.5, training = self.training) | ||
|
||
features_1D, squeezemap, concentrate_loss = self.S(features, temperature) | ||
features_1D = features_1D.permute(2, 0, 1) | ||
output = self.C(features_1D) | ||
ctc_loss = self.CTC(output, label) | ||
|
||
nB, nC, nH, nW = features.shape | ||
outputdense = self.C(features.view(nB, nC, -1).permute(2, 0, 1)) | ||
whace_loss = self.WH_ACE(outputdense, label+1) | ||
return output, squeezemap, ctc_loss, whace_loss, concentrate_loss | ||
else: | ||
features = self.F(input) | ||
features = features.permute(2,3,0,1) | ||
output = self.C(features) | ||
return output | ||
|
||
|
||
|
||
|
||
|
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.