forked from chrisconlon/applied_metrics
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0c29519
commit 0c8675d
Showing
23 changed files
with
3,413 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
Large diffs are not rendered by default.
Oops, something went wrong.
770 changes: 770 additions & 0 deletions
770
Lecture 11- Discrete Choice/advanced-binary-choice2.tex
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
|
||
## This is the Lewbel Dong Yang (2012) Example | ||
draw_sample = function(){ | ||
tibble( | ||
r = c(-1.8, -0.9, -0.92,-2.1, -1.92, 10), | ||
treated = c(0,0,0,1,1,1), | ||
true_te = c(0,0,0,0,1,0), | ||
error = rnorm(6), | ||
D = c(0,1,1,0,1,1) | ||
) %>% mutate(y = (r + true_te * treated + error)>0) | ||
} | ||
|
||
summary(lm(D~ treated+r, data=df)) | ||
|
||
# Now with 1000x more data | ||
for (n in 1:1000){data[[n]]=draw_sample()} | ||
df<-bind_rows(data) | ||
summary(lm(y~ treated+r, data=df)) | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
## ---- eval=FALSE--------------------------------------------------------- | ||
# glm(y ~ X + factor(i), family = binomial()) | ||
|
||
## ---- eval=FALSE--------------------------------------------------------- | ||
# time_bife <- system.time(bife(y ~ x + d | id, model = "logit", bias_corr = "ana"))[3] | ||
# time_clogit <- if(require("survival")) system.time(clogit(y ~ x + d + strata(id)))[3] | ||
# time_glm <- system.time(glm(y ~ x + d + 0 + factor(id), family = binomial()))[3] | ||
|
||
## ---- echo=FALSE, results='asis'----------------------------------------- | ||
# Load 'bife' | ||
library("bife") | ||
|
||
# Load results --- store_N and store_T | ||
time_n <- time_n | ||
time_t <- time_t | ||
|
||
# N and T vector | ||
N_vector <- rep(100, 10) | ||
T_vector <- rep(10, 10) | ||
|
||
# Bind results | ||
results <- cbind("N" = time_n[, 1], "T" = T_vector, time_n[, 2:4], "N" = N_vector, time_t) | ||
|
||
# Print results | ||
knitr::kable(results) | ||
|
||
## ---- echo=FALSE, warning=FALSE, message=FALSE, fig.show='hold'---------- | ||
# Load package | ||
if (require("ggplot2")) { | ||
|
||
# Colour palette for colour-blind | ||
cb.Palette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7") | ||
|
||
# Transform to data.frame | ||
time_n <- data.frame(time_n) | ||
time_t <- data.frame(time_t) | ||
|
||
# Regression N | ||
plot_N <- data.frame(N = time_n[["N"]]) | ||
plot_N[["bife_corr"]] <- fitted(lm(bife_corr ~ N, data = time_n)) | ||
plot_N[["clogit"]] <- fitted(lm(clogit ~ N, data = time_n)) | ||
plot_N[["glm"]] <- | ||
fitted(lm(glm ~ N + I(N ^ 2) + I(N ^ 3), data = time_n)) | ||
|
||
# Regression T | ||
plot_T <- data.frame(T = time_t[["T"]]) | ||
plot_T[["bife_corr"]] <- fitted(lm(bife_corr ~ T, data = time_t)) | ||
plot_T[["clogit"]] <- | ||
fitted(lm(clogit ~ T + I(T ^ 2) + I(T ^ 3), data = time_t)) | ||
plot_T[["glm"]] <- fitted(lm(glm ~ T, data = time_t)) | ||
|
||
# Plot N | ||
p <- ggplot(plot_N) + | ||
ylab(NULL) + | ||
xlim(100, 1000) + | ||
ylim(0, 1) + | ||
theme_bw() + | ||
theme(legend.justification = c(1, 1), | ||
legend.position = c(1, 1)) + | ||
geom_line(aes(N, bife_corr, colour = "bife_corr"), size = 0.5) + | ||
geom_line(aes(N, clogit, colour = "clogit"), size = 0.5) + | ||
geom_line(aes(N, glm, colour = "glm"), size = 0.5) + | ||
scale_color_manual("", values = cb.Palette) | ||
|
||
# Plot T | ||
q <- ggplot(plot_T) + | ||
ylab(NULL) + | ||
xlim(10, 100) + | ||
ylim(0, 1) + | ||
theme_bw() + | ||
theme(legend.justification = c(0, 1), | ||
legend.position = c(0, 1)) + | ||
geom_line(aes(T, bife_corr, colour = "bife_corr"), size = 0.5) + | ||
geom_line(aes(T, clogit, colour = "clogit"), size = 0.5) + | ||
geom_line(aes(T, glm, colour = "glm"), size = 0.5) + | ||
scale_color_manual("", values = cb.Palette) | ||
|
||
p | ||
q | ||
} | ||
|
||
## ---- echo=FALSE, results='asis'----------------------------------------- | ||
# Load results | ||
results_psid <- results_psid | ||
|
||
# Change the order of the cols and rename cols | ||
results_psid <- cbind(results_psid[, 1], results_psid[, 3], results_psid[, 2], results_psid[, 4]) | ||
colnames(results_psid) <- c("bife", "glm", "bife_corr", "clogit") | ||
|
||
# Print results | ||
knitr::kable(results_psid) | ||
|
||
## ---- echo=FALSE, warning=FALSE------------------------------------------ | ||
# Load data | ||
psid <- psid | ||
|
||
## ------------------------------------------------------------------------ | ||
mod_logit <- bife(LFP ~ AGE + I(INCH / 1000) + KID1 + KID2 + KID3 | ID, data = psid, bias_corr = "ana") | ||
summary(mod_logit) | ||
|
||
## ------------------------------------------------------------------------ | ||
apeff_bife(mod_logit, discrete = c("KID1", "KID2", "KID3"), bias_corr = "ana") | ||
|
||
## ------------------------------------------------------------------------ | ||
mod_probit <- bife(LFP ~ AGE + I(INCH / 1000) + KID1 + KID2 + KID3 | ID, | ||
data = psid, bias_corr = "ana", model = "probit") | ||
summary(mod_probit) | ||
|
||
## ------------------------------------------------------------------------ | ||
apeff_bife(mod_probit, discrete = c("KID1", "KID2", "KID3"), bias_corr = "ana") | ||
|
||
## ---- echo=FALSE, results='asis'----------------------------------------- | ||
# Load results | ||
results_acs <- results_acs | ||
|
||
# Change the order of the cols and rename cols | ||
results_acs <- cbind(results_acs[, 1], results_acs[, 3], results_acs[, 2], results_acs[, 4]) | ||
colnames(results_acs) <- c("bife", "glm", "bife_corr", "clogit") | ||
|
||
# Print results | ||
knitr::kable(results_acs) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Load data | ||
acs <- acs | ||
|
||
print(try(if(require("survival")) clogit(LFP ~ AGEP + I(PINCP / 1000) + FER + strata(ST), data = acs))) | ||
|
||
## ------------------------------------------------------------------------ | ||
mod_logit <- bife(LFP ~ AGEP + I(PINCP / 1000) + FER | ST, data = acs, bias_corr = "no") | ||
summary(mod_logit) | ||
|
||
## ------------------------------------------------------------------------ | ||
apeff_bife(mod_logit, discrete = "FER") | ||
|
Oops, something went wrong.