forked from Coopercoppers/PFN
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
fd4f2d5
commit 88f7605
Showing
1 changed file
with
116 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
import json | ||
import logging | ||
import sys | ||
import torch | ||
import argparse | ||
import pickle | ||
import numpy as np | ||
from utils.metrics import * | ||
from utils.helper import * | ||
from dataloader.dataloader import * | ||
from tqdm import tqdm | ||
from model.pfn import * | ||
|
||
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', | ||
datefmt='%m/%d/%Y %H:%M:%S', | ||
level=logging.INFO) | ||
logger = logging.getLogger(__name__) | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--data", default=None, type=str, required=True, | ||
help="which dataset to use") | ||
|
||
parser.add_argument("--batch_size", default=20, type=int, | ||
help="number of samples in one training batch") | ||
|
||
parser.add_argument("--eval_batch_size", default=10, type=int, | ||
help="number of samples in testing") | ||
|
||
parser.add_argument("--eval_metric", default="micro", type=str, | ||
help="micro f1 or macro f1") | ||
|
||
parser.add_argument("--model_file", default="saved_model.pt", type=str, required=True, | ||
help="file of saved model") | ||
|
||
parser.add_argument("--embed_mode", default=None, type=str, required=True, | ||
help="BERT or ALBERT pretrained embedding") | ||
|
||
parser.add_argument("--hidden_size", default=300, type=int, | ||
help="number of hidden neurons in the model") | ||
|
||
parser.add_argument("--dropout", default=0.1, type=float, | ||
help="dropout rate for input word embedding") | ||
|
||
parser.add_argument("--dropconnect", default=0.1, type=float, | ||
help="dropconnect rate for partition filter layer") | ||
|
||
parser.add_argument("--max_seq_len", default=128, type=int, | ||
help="maximum length of sequence") | ||
|
||
|
||
args = parser.parse_args() | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
logger.info(sys.argv) | ||
logger.info(args) | ||
|
||
|
||
with open("data/" + args.data + "/ner2idx.json", "r") as f: | ||
ner2idx = json.load(f) | ||
with open("data/" + args.data + "/rel2idx.json", "r") as f: | ||
rel2idx = json.load(f) | ||
|
||
train_batch, test_batch, dev_batch = dataloader(args, ner2idx, rel2idx) | ||
|
||
|
||
if args.embed_mode == "albert": | ||
input_size = 4096 | ||
else: | ||
input_size = 768 | ||
|
||
model = PFN(args, input_size, ner2idx, rel2idx) | ||
model.load_state_dict(torch.load(args.model_file)) | ||
model.to(device) | ||
model.eval() | ||
|
||
steps, test_loss = 0, 0 | ||
total_triple_num = [0, 0, 0] | ||
total_entity_num = [0, 0, 0] | ||
if args.eval_metric == "macro": | ||
total_triple_num *= len(rel2idx) | ||
total_entity_num *= len(ner2idx) | ||
|
||
if args.eval_metric == "micro": | ||
metric = micro(rel2idx, ner2idx) | ||
else: | ||
metric = macro(rel2idx, ner2idx) | ||
|
||
logger.info("------ Testing ------") | ||
with torch.no_grad(): | ||
for data in tqdm(test_batch): | ||
steps += 1 | ||
text = data[0] | ||
ner_label = data[1].to(device) | ||
re_label_head = data[2].to(device) | ||
re_label_tail = data[3].to(device) | ||
mask = data[-1].to(device) | ||
|
||
ner_pred, re_pred_head, re_pred_tail = model(text, mask) | ||
entity_num = metric.count_ner_num(ner_pred, ner_label) | ||
triple_num = metric.count_num(ner_pred, ner_label, re_pred_head, re_pred_tail, re_label_head, re_label_tail) | ||
|
||
for i in range(len(entity_num)): | ||
total_entity_num[i] += entity_num[i] | ||
for i in range(len(triple_num)): | ||
total_triple_num[i] += triple_num[i] | ||
|
||
triple_result = f1(total_triple_num) | ||
entity_result = f1(total_entity_num) | ||
|
||
logger.info("------ Test Results ------") | ||
logger.info("entity: p={:.4f}, r={:.4f}, f={:.4f}".format(entity_result["p"], entity_result["r"], entity_result["f"])) | ||
logger.info("triple: p={:.4f}, r={:.4f}, f={:.4f}".format(triple_result["p"], triple_result["r"], triple_result["f"])) |