Skip to content

WuDan0399/InkStream

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

InkStream: Instantaneous GNN Inference on Dynamic Graphs via Incremental Update (IPDPS 2025)

PyTorch implementation of optimizing the GNN inference for dynamic graphs via incremental computing. InkStream is able to reduce the inference time to milliseconds for dynamic graphs evolving with minor changes each time.

InkStream: Instantaneous GNN Inference on Dynamic Graphs via Incremental Update
Dan Wu*, Zhaoying Li*, Tulika Mitra*
*National University of Singapore

Quick Start

  1. Create docker container with conda environments: baseline and inkstream.
    cd docker
    docker build -t inkstream_image .
    docker run --name inkstream_container --gpus all --shm-size=32g -it inkstream_image
  2. Run InkStream:
    python inkstream_<gcn/sage/gin>.py --dataset <cora/PubMed/yelp/reddit/products/papers> --model <GCN/SAGE/GIN> --save_int --aggr <min/max/mean/sum> --perbatch <number of changed edges> --stream <mix/add/delete>

    e.g., python inkstream_gcn.py --dataset cora --model GCN --save_int --aggr min --perbatch 100 --stream mix

    Note:
        Inkstream can only be executed in inkstream conda environment inside the docker, as we made modifications to the torch_geometric library. Baseline methods should be executed in baseline conda environment.

  1. Run baseline (k-hop):
    conda activate baseline
    python timing_original.py --dataset cora --model GCN --aggr min --perbatch 100 --stream mix --range affected

Citation (To be updated)

If you find this project useful in your research, please cite our paper:

@article{wu2023inkstream,
  title={InkStream: Instantaneous GNN Inference on Dynamic Graphs via Incremental Update},
  author={Wu, Dan and Li, Zhaoying and Mitra, Tulika},
  journal={arXiv preprint arXiv:2309.11071},
  year={2023}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published