Skip to content

Commit

Permalink
[Doc] Add KNN Benchmark Results (dmlc#3055)
Browse files Browse the repository at this point in the history
* add knn benchmark result

* update
  • Loading branch information
hetong007 authored Jun 28, 2021
1 parent 81456af commit 789b03f
Show file tree
Hide file tree
Showing 2 changed files with 130 additions and 0 deletions.
128 changes: 128 additions & 0 deletions docs/source/api/python/knn_benchmark.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
.. _knn_benchmark:

Benchmark the performance of KNN algorithms
===========================================

In this doc, we benchmark the performance on multiple K-Nearest Neighbor algorithms implemented by :func:`dgl.knn_graph`.

Given a dataset of ``N`` samples with ``D`` dimensions, the common use case of KNN algorithms in graph learning is to build a KNN graph by finding the ``K`` nearest neighbors for each of the ``N`` samples among the dataset.

Empirically, the three parameters, ``N``, ``D``, and ``K``, all have impact on the computation cost. To benchmark the algorithms, we pick a few represensitive datasets to cover most common scenarios:

* A synthetic dataset with mixed gaussian samples: ``N = 1000``, ``D = 3``.
* A point cloud sample from ModelNet: ``N = 10000``, ``D = 3``.
* Subsets of MNIST
- A small subset: ``N = 1000``, ``D = 784``
- A medium subset: ``N = 10000``, ``D = 784``
- A large subset: ``N = 50000``, ``D = 784``

Some notes:

* ``bruteforce-sharemem`` is an optimized implementation of ``bruteforce`` on GPU.
* ``kd-tree`` is currently only implemented on CPU.
* ``bruteforce-blas`` conducts matrix multiplication, thus is memory inefficient.
* ``nn-descent`` is an approximate algorithm, and we also report the recall rate of its result.

Results
-------

In this section, we show the runtime and recall rate (where applicable) for the algorithms under various scenarios.

The experiments are run on an Amazon EC2 P3.2xlarge instance. This instance has 8 vCPUs with 61GB RAM, and one Tesla V100 GPU with 16GB RAM. In terms of the environment, we obtain the numbers with DGL==0.7.0(`64d0f3f <https://github.com/dmlc/dgl/commit/64d0f3f3554911ec06d015f1c9659180796adf9a>`_), PyTorch==1.8.1, CUDA==11.1 on Ubuntu 18.04.5 LTS.

* **Mixed Gaussian:**

+---------------------+------------------+-------------------+------------------+------------------+
| Model | CPU | GPU |
| +------------------+-------------------+------------------+------------------+
| | K = 8 | K = 64 | K = 8 | K = 64 |
+=====================+==================+===================+==================+==================+
| bruteforce-blas | 0.010 | 0.011 | 0.002 | 0.003 |
+---------------------+------------------+-------------------+------------------+------------------+
| kd-tree | 0.004 | 0.006 | n/a | n/a |
+---------------------+------------------+-------------------+------------------+------------------+
| bruteforce | 0.004 | 0.006 | 0.126 | 0.009 |
+---------------------+------------------+-------------------+------------------+------------------+
| bruteforce-sharemem | n/a | n/a | 0.002 | 0.003 |
+---------------------+------------------+-------------------+------------------+------------------+
| nn-descent | 0.014 (R: 0.985) | 0.148 (R: 1.000) | 0.016 (R: 0.973) | 0.077 (R: 1.000) |
+---------------------+------------------+-------------------+------------------+------------------+

* **Point Cloud**

+---------------------+------------------+-------------------+------------------+------------------+
| Model | CPU | GPU |
| +------------------+-------------------+------------------+------------------+
| | K = 8 | K = 64 | K = 8 | K = 64 |
+=====================+==================+===================+==================+==================+
| bruteforce-blas | 0.359 | 0.432 | 0.010 | 0.010 |
+---------------------+------------------+-------------------+------------------+------------------+
| kd-tree | 0.007 | 0.026 | n/a | n/a |
+---------------------+------------------+-------------------+------------------+------------------+
| bruteforce | 0.074 | 0.167 | 0.008 | 0.039 |
+---------------------+------------------+-------------------+------------------+------------------+
| bruteforce-sharemem | n/a | n/a | 0.004 | 0.017 |
+---------------------+------------------+-------------------+------------------+------------------+
| nn-descent | 0.161 (R: 0.977) | 1.345 (R: 0.999) | 0.086 (R: 0.966) | 0.445 (R: 0.999) |
+---------------------+------------------+-------------------+------------------+------------------+

* **Small MNIST**

+---------------------+------------------+-------------------+------------------+------------------+
| Model | CPU | GPU |
| +------------------+-------------------+------------------+------------------+
| | K = 8 | K = 64 | K = 8 | K = 64 |
+=====================+==================+===================+==================+==================+
| bruteforce-blas | 0.014 | 0.015 | 0.002 | 0.002 |
+---------------------+------------------+-------------------+------------------+------------------+
| kd-tree | 0.179 | 0.182 | n/a | n/a |
+---------------------+------------------+-------------------+------------------+------------------+
| bruteforce | 0.173 | 0.228 | 0.123 | 0.170 |
+---------------------+------------------+-------------------+------------------+------------------+
| bruteforce-sharemem | n/a | n/a | 0.045 | 0.054 |
+---------------------+------------------+-------------------+------------------+------------------+
| nn-descent | 0.060 (R: 0.878) | 1.077 (R: 0.999) | 0.030 (R: 0.952) | 0.457 (R: 0.999) |
+---------------------+------------------+-------------------+------------------+------------------+

* **Medium MNIST**

+---------------------+------------------+-------------------+------------------+------------------+
| Model | CPU | GPU |
| +------------------+-------------------+------------------+------------------+
| | K = 8 | K = 64 | K = 8 | K = 64 |
+=====================+==================+===================+==================+==================+
| bruteforce-blas | 0.897 | 0.970 | 0.019 | 0.023 |
+---------------------+------------------+-------------------+------------------+------------------+
| kd-tree | 18.902 | 18.928 | n/a | n/a |
+---------------------+------------------+-------------------+------------------+------------------+
| bruteforce | 14.495 | 17.652 | 2.058 | 2.588 |
+---------------------+------------------+-------------------+------------------+------------------+
| bruteforce-sharemem | n/a | n/a | 2.257 | 2.524 |
+---------------------+------------------+-------------------+------------------+------------------+
| nn-descent | 0.804 (R: 0.755) | 14.108 (R: 0.999) | 0.158 (R: 0.900) | 1.794 (R: 0.999) |
+---------------------+------------------+-------------------+------------------+------------------+

* **Large MNIST**

+---------------------+------------------+-------------------+------------------+------------------+
| Model | CPU | GPU |
| +------------------+-------------------+------------------+------------------+
| | K = 8 | K = 64 | K = 8 | K = 64 |
+=====================+==================+===================+==================+==================+
| bruteforce-blas | 21.829 | 22.135 | Out of Memory | Out of Memory |
+---------------------+------------------+-------------------+------------------+------------------+
| kd-tree | 542.688 | 573.379 | n/a | n/a |
+---------------------+------------------+-------------------+------------------+------------------+
| bruteforce | 373.823 | 432.963 | 10.317 | 12.639 |
+---------------------+------------------+-------------------+------------------+------------------+
| bruteforce-sharemem | n/a | n/a | 53.133 | 58.419 |
+---------------------+------------------+-------------------+------------------+------------------+
| nn-descent | 4.995 (R: 0.658) | 75.487 (R: 0.999) | 1.478 (R: 0.860) | 15.698 (R: 0.999)|
+---------------------+------------------+-------------------+------------------+------------------+

Conclusion
----------

- As long as you have enough memory, ``bruteforce-blas`` is the default algorithm to go with.
- Specifically, when ``D`` is small and the data is on CPU, ``kd-tree`` is the best algorithm.

2 changes: 2 additions & 0 deletions python/dgl/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,8 @@ def knn_graph(x, k, algorithm='bruteforce-blas', dist='euclidean'):
into a separate graph. DGL then composes the graphs into a large
graph of multiple connected components.
See :doc:`the benchmark <../api/python/knn_benchmark>` for a complete benchmark result.
Parameters
----------
x : Tensor
Expand Down

0 comments on commit 789b03f

Please sign in to comment.