SCRFD(Sample and Computation Redistribution for Efficient Face Detection)是一种基于FCOS 的人脸检测算法,该算法在2021年5月推出。它被设计为一个高效和高精度的人脸检测器,其速度和准确性相较于其他现有算法都有显著提高。
论文地址 (https://arxiv.org/pdf/2105.04714.pdf)
源码地址 (https://github.com/deepinsight/insightface/tree/master/detection/scrfd)
- 支持BM1688/CV186X(SoC)、BM1684X(x86 PCIe、SoC)、BM1684(x86 PCIe、SoC)
- 支持FP32、FP16(BM1684X/BM1688/CV186X)、INT8模型编译和推理
- 支持基于BMCV预处理的C++推理
- 支持基于OpenCV和BMCV预处理的Python推理
- 支持单batch模型推理
- 支持图片和视频测试
建议使用TPU-MLIR编译BModel,Pytorch模型在编译前要导出成onnx模型,如果您使用的tpu-mlir版本>=v1.3.0(即官网v23.07.01),可以直接使用torchscript模型。具体可参考SCRFD模型导出方法。
同时,您需要准备用于测试的数据集,如果量化模型,还要准备用于量化的数据集。
本例程提供了一种性能和精度上较高的模型, scrfd_10g_kps.onnx
。您都可以使用MLIR工具链转出为对应的bmodel模型。
如果您想使用其他模型,您可以访问 源码地址 进行下载,并参考 SCRFD模型导出方法 进行导出。
同时,您需要准备用于测试的数据集,如果量化模型,还要准备用于量化的数据集。
本例程在scripts
目录下提供了相关模型和数据集的下载脚本download.sh
,您也可以自己准备模型和数据集,并参考4. 模型编译进行模型转换。
# 安装unzip,若已安装请跳过,非ubuntu系统视情况使用yum或其他方式安装
sudo apt install unzip
chmod -R +x scripts/
./scripts/download.sh
下载的模型包括
./models
.
├── BM1684 # 使用TPU-MLIR编译,用于BM1684的 BModel
│ ├── scrfd_10g_kps_fp32_1b.bmodel
│ ├── scrfd_10g_kps_int8_1b.bmodel
│ ├── scrfd_10g_kps_int8_4b.bmodel
├── BM1684X # 使用TPU-MLIR编译,用于BM1684X的 BModel
│ ├── scrfd_10g_kps_fp16_1b.bmodel
│ ├── scrfd_10g_kps_fp32_1b.bmodel
│ ├── scrfd_10g_kps_int8_1b.bmodel
│ ├── scrfd_10g_kps_int8_4b.bmodel
├── BM1688 # 使用TPU-MLIR编译,用于BM1688的 BModel
│ ├── scrfd_10g_kps_fp16_1b_2core.bmodel
│ ├── scrfd_10g_kps_fp16_1b.bmodel
│ ├── scrfd_10g_kps_fp32_1b_2core.bmodel
│ ├── scrfd_10g_kps_fp32_1b.bmodel
│ ├── scrfd_10g_kps_int8_1b_2core.bmodel
│ ├── scrfd_10g_kps_int8_1b.bmodel
│ ├── scrfd_10g_kps_int8_4b_2core.bmodel
│ ├── scrfd_10g_kps_int8_4b.bmodel
├── CV186X # 使用TPU-MLIR编译,用于CV186X的 BModel
│ ├── scrfd_10g_kps_fp16_1b.bmodel
│ ├── scrfd_10g_kps_fp32_1b.bmodel
│ ├── scrfd_10g_kps_int8_1b.bmodel
│ ├── scrfd_10g_kps_int8_4b.bmodel
└── onnx # 导出的onnx模型
├── scrfd_10g_kps_1b.onnx
├── scrfd_10g_kps_4b.onnx
下载的数据包括:
./datasets
├── face_det.mp4 # 测试视频
├── test # 测试图片
│ ├── men.jpg
│ └── selfie.jpg
└── WIDER_val # 精度评估数据集
└── images
模型编译前需要安装TPU-MLIR,具体可参考TPU-MLIR环境搭建。安装好后需在TPU-MLIR环境中进入例程目录。使用TPU-MLIR将onnx模型编译为BModel,具体方法可参考《TPU-MLIR快速入门手册》的“3. 编译ONNX模型”(请从算能官网相应版本的SDK中获取)。
- 生成FP32 BModel
本例程在scripts
目录下提供了TPU-MLIR编译FP32 BModel的脚本,请注意修改gen_fp32bmodel_mlir.sh
中的onnx模型路径、生成模型目录和输入大小shapes等参数,并在执行时指定BModel运行的目标平台(支持BM1684X/BM1688/CV186X),如:
./scripts/gen_fp32bmodel_mlir.sh bm1684 #bm1684x/bm1688/cv186x
执行上述命令会在models/BM1684
等文件夹下生成scrfd_10g_kps_fp32_1b.bmodel
文件,即转换好的FP32 BModel。
- 生成FP16 BModel
本例程在scripts
目录下提供了TPU-MLIR编译FP16 BModel的脚本,请注意修改gen_fp16bmodel_mlir.sh
中的onnx模型路径、生成模型目录和输入大小shapes等参数,并在执行时指定BModel运行的目标平台(支持BM1684X/BM1688/CV186X),如:
./scripts/gen_fp16bmodel_mlir.sh bm1684x #bm1688/cv186x
执行上述命令会在models/BM1684X/
等文件夹下生成scrfd_10g_kps_fp16_1b.bmodel
文件,即转换好的FP16 BModel。
- 生成INT8 BModel
本例程在scripts
目录下提供了量化INT8 BModel的脚本,请注意修改gen_int8bmodel_mlir.sh
中的onnx模型路径、生成模型目录和输入大小shapes等参数,在执行时输入BModel的目标平台(支持BM1684X/BM1688/CV186X),如:
./scripts/gen_int8bmodel_mlir.sh bm1684 #bm1684x/bm1688/cv186x
上述脚本会在models/BM1684
等文件夹下生成scrfd_10g_kps_int8_1b.bmodel
等文件,即转换好的INT8 BModel。
首先,参考C++例程或Python例程推理要测试的数据集,生成预测的txt文件夹,注意修改数据集(datasets/WIDER_val)和相关参数(conf_thresh=0.02、nms_thresh=0.45以及--eval=True)。
然后,使用tools
目录下的evaluation.py
脚本,将测试生成的txt文件夹与测试集标签ground_truth文件夹进行对比,计算出人脸检测的评价指标,命令如下:
cd tools
pip3 install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
python3 setup.py build_ext --inplace
python3 evaluation.py --pred ./prediction_dir --gt ground_truth
具体测试方法,请参考精度测试
在WIDER FACE
数据集上,官方SCRFD_10G_KPS模型的精度测试结果是:Easy: 0.9540, Medium: 0.9401, Hard: 0.8280
,本例程的精度测试结果如下表所示:
测试平台 | 测试程序 | 测试模型 | Easy | Medium | Hard |
---|---|---|---|---|---|
SE5-16 | scrfd_opencv.py | scrfd_10g_kps_fp32_1b.bmodel | 0.940 | 0.924 | 0.800 |
SE5-16 | scrfd_opencv.py | scrfd_10g_kps_int8_1b.bmodel | 0.913 | 0.904 | 0.783 |
SE5-16 | scrfd_opencv.py | scrfd_10g_kps_int8_4b.bmodel | 0.929 | 0.916 | 0.796 |
SE5-16 | scrfd_bmcv.py | scrfd_10g_kps_fp32_1b.bmodel | 0.939 | 0.921 | 0.784 |
SE5-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_1b.bmodel | 0.912 | 0.900 | 0.767 |
SE5-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_4b.bmodel | 0.926 | 0.912 | 0.778 |
SE5-16 | scrfd_bmcv.soc | scrfd_10g_kps_fp32_1b.bmodel | 0.936 | 0.917 | 0.764 |
SE5-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_1b.bmodel | 0.835 | 0.825 | 0.659 |
SE5-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_4b.bmodel | 0.864 | 0.847 | 0.677 |
SE5-16 | scrfd_sail.soc | scrfd_10g_kps_fp32_1b.bmodel | 0.936 | 0.917 | 0.764 |
SE5-16 | scrfd_sail.soc | scrfd_10g_kps_int8_1b.bmodel | 0.835 | 0.825 | 0.659 |
SE5-16 | scrfd_sail.soc | scrfd_10g_kps_int8_4b.bmodel | 0.864 | 0.847 | 0.677 |
SE7-32 | scrfd_opencv.py | scrfd_10g_kps_fp32_1b.bmodel | 0.940 | 0.924 | 0.800 |
SE7-32 | scrfd_opencv.py | scrfd_10g_kps_fp16_1b.bmodel | 0.940 | 0.924 | 0.800 |
SE7-32 | scrfd_opencv.py | scrfd_10g_kps_int8_1b.bmodel | 0.939 | 0.923 | 0.796 |
SE7-32 | scrfd_opencv.py | scrfd_10g_kps_int8_4b.bmodel | 0.939 | 0.923 | 0.799 |
SE7-32 | scrfd_bmcv.py | scrfd_10g_kps_fp32_1b.bmodel | 0.939 | 0.921 | 0.786 |
SE7-32 | scrfd_bmcv.py | scrfd_10g_kps_fp16_1b.bmodel | 0.939 | 0.921 | 0.786 |
SE7-32 | scrfd_bmcv.py | scrfd_10g_kps_int8_1b.bmodel | 0.938 | 0.919 | 0.783 |
SE7-32 | scrfd_bmcv.py | scrfd_10g_kps_int8_4b.bmodel | 0.937 | 0.919 | 0.783 |
SE7-32 | scrfd_bmcv.soc | scrfd_10g_kps_fp32_1b.bmodel | 0.937 | 0.917 | 0.772 |
SE7-32 | scrfd_bmcv.soc | scrfd_10g_kps_fp16_1b.bmodel | 0.937 | 0.917 | 0.772 |
SE7-32 | scrfd_bmcv.soc | scrfd_10g_kps_int8_1b.bmodel | 0.885 | 0.863 | 0.689 |
SE7-32 | scrfd_bmcv.soc | scrfd_10g_kps_int8_4b.bmodel | 0.887 | 0.865 | 0.691 |
SE7-32 | scrfd_sail.soc | scrfd_10g_kps_fp32_1b.bmodel | 0.937 | 0.917 | 0.772 |
SE7-32 | scrfd_sail.soc | scrfd_10g_kps_fp16_1b.bmodel | 0.937 | 0.917 | 0.772 |
SE7-32 | scrfd_sail.soc | scrfd_10g_kps_int8_1b.bmodel | 0.885 | 0.863 | 0.689 |
SE7-32 | scrfd_sail.soc | scrfd_10g_kps_int8_4b.bmodel | 0.887 | 0.864 | 0.690 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_fp32_1b.bmodel | 0.940 | 0.924 | 0.800 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_fp16_1b.bmodel | 0.940 | 0.924 | 0.800 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_int8_1b.bmodel | 0.938 | 0.923 | 0.798 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_int8_4b.bmodel | 0.939 | 0.923 | 0.798 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_fp32_1b.bmodel | 0.938 | 0.919 | 0.780 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_fp16_1b.bmodel | 0.938 | 0.919 | 0.780 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_1b.bmodel | 0.936 | 0.917 | 0.776 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_4b.bmodel | 0.936 | 0.917 | 0.776 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_fp32_1b.bmodel | 0.936 | 0.916 | 0.766 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_fp16_1b.bmodel | 0.936 | 0.916 | 0.766 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_1b.bmodel | 0.886 | 0.864 | 0.687 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_4b.bmodel | 0.886 | 0.864 | 0.687 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_fp32_1b.bmodel | 0.930 | 0.912 | 0.764 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_fp16_1b.bmodel | 0.935 | 0.915 | 0.765 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_int8_1b.bmodel | 0.885 | 0.863 | 0.687 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_int8_4b.bmodel | 0.885 | 0.863 | 0.686 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_fp32_1b_2core.bmodel | 0.940 | 0.924 | 0.800 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_fp16_1b_2core.bmodel | 0.940 | 0.924 | 0.800 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_int8_1b_2core.bmodel | 0.938 | 0.923 | 0.798 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_int8_4b_2core.bmodel | 0.939 | 0.923 | 0.798 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_fp32_1b_2core.bmodel | 0.938 | 0.919 | 0.780 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_fp16_1b_2core.bmodel | 0.938 | 0.919 | 0.780 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_1b_2core.bmodel | 0.936 | 0.917 | 0.776 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_4b_2core.bmodel | 0.936 | 0.917 | 0.776 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_fp32_1b_2core.bmodel | 0.936 | 0.916 | 0.766 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_fp16_1b_2core.bmodel | 0.936 | 0.916 | 0.766 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_1b_2core.bmodel | 0.886 | 0.864 | 0.687 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_4b_2core.bmodel | 0.886 | 0.864 | 0.687 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_fp32_1b_2core.bmodel | 0.931 | 0.913 | 0.764 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_fp16_1b_2core.bmodel | 0.931 | 0.912 | 0.764 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_int8_1b_2core.bmodel | 0.884 | 0.862 | 0.686 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_int8_4b_2core.bmodel | 0.885 | 0.863 | 0.686 |
SE9-8 | scrfd_opencv.py | scrfd_10g_kps_fp32_1b.bmodel | 0.940 | 0.924 | 0.800 |
SE9-8 | scrfd_opencv.py | scrfd_10g_kps_fp16_1b.bmodel | 0.940 | 0.924 | 0.800 |
SE9-8 | scrfd_opencv.py | scrfd_10g_kps_int8_1b.bmodel | 0.938 | 0.923 | 0.798 |
SE9-8 | scrfd_opencv.py | scrfd_10g_kps_int8_4b.bmodel | 0.939 | 0.923 | 0.799 |
SE9-8 | scrfd_bmcv.py | scrfd_10g_kps_fp32_1b.bmodel | 0.938 | 0.919 | 0.778 |
SE9-8 | scrfd_bmcv.py | scrfd_10g_kps_fp16_1b.bmodel | 0.938 | 0.919 | 0.778 |
SE9-8 | scrfd_bmcv.py | scrfd_10g_kps_int8_1b.bmodel | 0.936 | 0.917 | 0.776 |
SE9-8 | scrfd_bmcv.py | scrfd_10g_kps_int8_4b.bmodel | 0.936 | 0.917 | 0.776 |
SE9-8 | scrfd_bmcv.soc | scrfd_10g_kps_fp32_1b.bmodel | 0.936 | 0.916 | 0.765 |
SE9-8 | scrfd_bmcv.soc | scrfd_10g_kps_fp16_1b.bmodel | 0.936 | 0.916 | 0.765 |
SE9-8 | scrfd_bmcv.soc | scrfd_10g_kps_int8_1b.bmodel | 0.885 | 0.863 | 0.687 |
SE9-8 | scrfd_bmcv.soc | scrfd_10g_kps_int8_4b.bmodel | 0.886 | 0.864 | 0.688 |
SE9-8 | scrfd_sail.soc | scrfd_10g_kps_fp32_1b.bmodel | 0.936 | 0.916 | 0.765 |
SE9-8 | scrfd_sail.soc | scrfd_10g_kps_fp16_1b.bmodel | 0.936 | 0.916 | 0.765 |
SE9-8 | scrfd_sail.soc | scrfd_10g_kps_int8_1b.bmodel | 0.885 | 0.863 | 0.687 |
SE9-8 | scrfd_sail.soc | scrfd_10g_kps_int8_4b.bmodel | 0.885 | 0.863 | 0.687 |
使用bmrt_test测试模型的理论性能:
# 请根据实际情况修改要测试的bmodel路径和devid参数
bmrt_test --bmodel models/BM1684X/scrfd_10g_kps_fp32_1b.bmodel
测试结果中的calculate time
就是模型推理的时间,多batch size模型应当除以相应的batch size才是每张图片的理论推理时间。
测试各个模型的理论推理时间,结果如下:
测试模型 | calculate time(ms) |
---|---|
BM1684/scrfd_10g_kps_fp32_1b.bmodel | 20.082 |
BM1684/scrfd_10g_kps_int8_1b.bmodel | 16.265 |
BM1684/scrfd_10g_kps_int8_4b.bmodel | 5.024 |
BM1684X/scrfd_10g_kps_fp16_1b.bmodel | 3.791 |
BM1684X/scrfd_10g_kps_fp32_1b.bmodel | 34.830 |
BM1684X/scrfd_10g_kps_int8_1b.bmodel | 2.645 |
BM1684X/scrfd_10g_kps_int8_4b.bmodel | 2.537 |
BM1688/scrfd_10g_kps_fp16_1b.bmodel | 45.524 |
BM1688/scrfd_10g_kps_fp16_1b_2core.bmodel | 31.586 |
BM1688/scrfd_10g_kps_fp32_1b.bmodel | 323.095 |
BM1688/scrfd_10g_kps_fp32_1b_2core.bmodel | 190.639 |
BM1688/scrfd_10g_kps_int8_1b.bmodel | 13.398 |
BM1688/scrfd_10g_kps_int8_1b_2core.bmodel | 11.044 |
BM1688/scrfd_10g_kps_int8_4b.bmodel | 12.720 |
BM1688/scrfd_10g_kps_int8_4b_2core.bmodel | 7.188 |
CV186X/scrfd_10g_kps_fp16_1b.bmodel | 42.652 |
CV186X/scrfd_10g_kps_fp32_1b.bmodel | 317.354 |
CV186X/scrfd_10g_kps_int8_1b.bmodel | 13.034 |
CV186X/scrfd_10g_kps_int8_4b.bmodel | 12.323 |
测试说明:
- 性能测试结果具有一定的波动性;
calculate time
已折算为平均每张图片的推理时间;- SoC和PCIe的测试结果基本一致。
参考C++例程或Python例程运行程序,并查看统计的解码时间、预处理时间、推理时间、后处理时间。
在不同的测试平台上,使用不同的例程、模型测试datasets/WIDER_val
,conf_thresh=0.5,nms_thresh=0.5,性能测试结果如下:
测试平台 | 测试程序 | 测试模型 | decode_time | preprocess_time | inference_time | postprocess_time |
---|---|---|---|---|---|---|
SE5-16 | scrfd_opencv.py | scrfd_10g_kps_fp32_1b.bmodel | 35.23 | 24.33 | 24.99 | 8.54 |
SE5-16 | scrfd_opencv.py | scrfd_10g_kps_int8_1b.bmodel | 30.26 | 24.62 | 21.25 | 8.52 |
SE5-16 | scrfd_opencv.py | scrfd_10g_kps_int8_4b.bmodel | 30.21 | 26.23 | 8.69 | 8.39 |
SE5-16 | scrfd_bmcv.py | scrfd_10g_kps_fp32_1b.bmodel | 3.61 | 3.79 | 21.95 | 8.62 |
SE5-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_1b.bmodel | 3.61 | 3.77 | 18.13 | 8.53 |
SE5-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_4b.bmodel | 3.40 | 3.61 | 5.96 | 8.51 |
SE5-16 | scrfd_bmcv.soc | scrfd_10g_kps_fp32_1b.bmodel | 4.42 | 0.97 | 20.06 | 8.46 |
SE5-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_1b.bmodel | 4.40 | 0.97 | 16.25 | 8.17 |
SE5-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_4b.bmodel | 4.19 | 0.91 | 5.03 | 8.52 |
SE5-16 | scrfd_sail.soc | scrfd_10g_kps_fp32_1b.bmodel | 3.21 | 3.93 | 20.39 | 8.55 |
SE5-16 | scrfd_sail.soc | scrfd_10g_kps_int8_1b.bmodel | 3.22 | 3.94 | 16.58 | 8.38 |
SE5-16 | scrfd_sail.soc | scrfd_10g_kps_int8_4b.bmodel | 3.05 | 3.71 | 5.18 | 7.72 |
SE7-32 | scrfd_opencv.py | scrfd_10g_kps_fp32_1b.bmodel | 30.32 | 24.94 | 40.36 | 8.45 |
SE7-32 | scrfd_opencv.py | scrfd_10g_kps_fp16_1b.bmodel | 30.03 | 25.25 | 9.34 | 8.40 |
SE7-32 | scrfd_opencv.py | scrfd_10g_kps_int8_1b.bmodel | 30.07 | 25.90 | 8.19 | 8.42 |
SE7-32 | scrfd_opencv.py | scrfd_10g_kps_int8_4b.bmodel | 30.13 | 27.52 | 6.71 | 8.21 |
SE7-32 | scrfd_bmcv.py | scrfd_10g_kps_fp32_1b.bmodel | 3.08 | 3.00 | 36.84 | 8.55 |
SE7-32 | scrfd_bmcv.py | scrfd_10g_kps_fp16_1b.bmodel | 3.10 | 3.01 | 5.83 | 8.49 |
SE7-32 | scrfd_bmcv.py | scrfd_10g_kps_int8_1b.bmodel | 3.07 | 2.99 | 4.65 | 8.60 |
SE7-32 | scrfd_bmcv.py | scrfd_10g_kps_int8_4b.bmodel | 2.90 | 2.80 | 3.55 | 8.32 |
SE7-32 | scrfd_bmcv.soc | scrfd_10g_kps_fp32_1b.bmodel | 3.92 | 0.87 | 34.85 | 8.45 |
SE7-32 | scrfd_bmcv.soc | scrfd_10g_kps_fp16_1b.bmodel | 3.88 | 0.87 | 3.81 | 8.54 |
SE7-32 | scrfd_bmcv.soc | scrfd_10g_kps_int8_1b.bmodel | 3.90 | 0.87 | 2.65 | 8.45 |
SE7-32 | scrfd_bmcv.soc | scrfd_10g_kps_int8_4b.bmodel | 3.75 | 0.84 | 2.54 | 8.71 |
SE7-32 | scrfd_sail.soc | scrfd_10g_kps_fp32_1b.bmodel | 2.67 | 3.15 | 35.16 | 8.71 |
SE7-32 | scrfd_sail.soc | scrfd_10g_kps_fp16_1b.bmodel | 2.66 | 3.15 | 4.16 | 8.87 |
SE7-32 | scrfd_sail.soc | scrfd_10g_kps_int8_1b.bmodel | 2.66 | 3.16 | 3.00 | 8.76 |
SE7-32 | scrfd_sail.soc | scrfd_10g_kps_int8_4b.bmodel | 2.52 | 3.07 | 2.69 | 7.77 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_fp32_1b.bmodel | 45.48 | 33.19 | 170.02 | 11.41 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_fp16_1b.bmodel | 49.88 | 32.64 | 30.87 | 11.49 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_int8_1b.bmodel | 50.62 | 32.52 | 14.32 | 11.57 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_int8_4b.bmodel | 45.14 | 35.53 | 12.01 | 11.23 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_fp32_1b.bmodel | 9.31 | 6.89 | 165.62 | 11.49 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_fp16_1b.bmodel | 12.83 | 6.89 | 26.40 | 11.55 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_1b.bmodel | 12.73 | 6.88 | 9.98 | 11.55 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_4b.bmodel | 9.59 | 6.56 | 8.09 | 11.13 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_fp32_1b.bmodel | 8.38 | 2.43 | 162.74 | 11.78 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_fp16_1b.bmodel | 8.77 | 2.43 | 23.60 | 11.77 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_1b.bmodel | 6.41 | 2.43 | 7.19 | 11.58 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_4b.bmodel | 6.03 | 2.35 | 6.76 | 11.93 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_fp32_1b.bmodel | 11.47 | 6.84 | 163.27 | 11.98 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_fp16_1b.bmodel | 11.45 | 6.84 | 24.09 | 11.93 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_int8_1b.bmodel | 10.16 | 6.83 | 7.67 | 12.02 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_int8_4b.bmodel | 5.65 | 6.66 | 6.96 | 10.95 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_fp32_1b_2core.bmodel | 43.36 | 33.20 | 103.05 | 11.41 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_fp16_1b_2core.bmodel | 48.23 | 32.99 | 23.20 | 11.48 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_int8_1b_2core.bmodel | 50.92 | 33.15 | 13.04 | 11.50 |
SE9-16 | scrfd_opencv.py | scrfd_10g_kps_int8_4b_2core.bmodel | 45.26 | 36.02 | 9.06 | 11.26 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_fp32_1b_2core.bmodel | 11.12 | 6.91 | 98.64 | 11.47 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_fp16_1b_2core.bmodel | 5.53 | 6.89 | 19.00 | 11.53 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_1b_2core.bmodel | 5.43 | 6.88 | 8.74 | 11.53 |
SE9-16 | scrfd_bmcv.py | scrfd_10g_kps_int8_4b_2core.bmodel | 5.19 | 6.58 | 5.22 | 11.16 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_fp32_1b_2core.bmodel | 7.16 | 2.43 | 95.78 | 11.67 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_fp16_1b_2core.bmodel | 6.78 | 2.43 | 16.20 | 11.72 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_1b_2core.bmodel | 6.21 | 2.43 | 5.92 | 11.72 |
SE9-16 | scrfd_bmcv.soc | scrfd_10g_kps_int8_4b_2core.bmodel | 5.99 | 2.35 | 3.89 | 11.92 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_fp32_1b_2core.bmodel | 5.81 | 6.83 | 96.29 | 12.05 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_fp16_1b_2core.bmodel | 5.37 | 6.82 | 16.69 | 12.02 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_int8_1b_2core.bmodel | 4.83 | 6.82 | 6.41 | 11.95 |
SE9-16 | scrfd_sail.soc | scrfd_10g_kps_int8_4b_2core.bmodel | 4.65 | 6.66 | 4.09 | 10.78 |
SE9-8 | scrfd_opencv.py | scrfd_10g_kps_fp32_1b.bmodel | 45.91 | 34.23 | 324.44 | 11.54 |
SE9-8 | scrfd_opencv.py | scrfd_10g_kps_fp16_1b.bmodel | 71.27 | 33.46 | 49.85 | 11.56 |
SE9-8 | scrfd_opencv.py | scrfd_10g_kps_int8_1b.bmodel | 78.83 | 32.81 | 20.13 | 11.57 |
SE9-8 | scrfd_opencv.py | scrfd_10g_kps_int8_4b.bmodel | 44.62 | 35.96 | 17.73 | 11.44 |
SE9-8 | scrfd_bmcv.py | scrfd_10g_kps_fp32_1b.bmodel | 13.58 | 7.24 | 320.40 | 11.52 |
SE9-8 | scrfd_bmcv.py | scrfd_10g_kps_fp16_1b.bmodel | 10.34 | 7.25 | 45.68 | 11.69 |
SE9-8 | scrfd_bmcv.py | scrfd_10g_kps_int8_1b.bmodel | 9.94 | 7.26 | 16.01 | 11.62 |
SE9-8 | scrfd_bmcv.py | scrfd_10g_kps_int8_4b.bmodel | 15.90 | 6.96 | 13.84 | 11.17 |
SE9-8 | scrfd_bmcv.soc | scrfd_10g_kps_fp32_1b.bmodel | 9.60 | 2.57 | 317.28 | 11.74 |
SE9-8 | scrfd_bmcv.soc | scrfd_10g_kps_fp16_1b.bmodel | 10.47 | 2.58 | 42.64 | 11.71 |
SE9-8 | scrfd_bmcv.soc | scrfd_10g_kps_int8_1b.bmodel | 9.99 | 2.57 | 13.00 | 11.63 |
SE9-8 | scrfd_bmcv.soc | scrfd_10g_kps_int8_4b.bmodel | 8.39 | 2.49 | 12.34 | 12.01 |
SE9-8 | scrfd_sail.soc | scrfd_10g_kps_fp32_1b.bmodel | 8.49 | 7.06 | 317.85 | 12.10 |
SE9-8 | scrfd_sail.soc | scrfd_10g_kps_fp16_1b.bmodel | 9.08 | 7.06 | 43.18 | 12.02 |
SE9-8 | scrfd_sail.soc | scrfd_10g_kps_int8_1b.bmodel | 10.51 | 7.06 | 13.52 | 12.02 |
SE9-8 | scrfd_sail.soc | scrfd_10g_kps_int8_4b.bmodel | 8.79 | 6.86 | 12.55 | 10.79 |
测试说明:
- 时间单位均为毫秒(ms),统计的时间均为平均每张图片处理的时间;
- 性能测试结果具有一定的波动性,建议多次测试取平均值;
- SE5-16/SE7-32的主控处理器均为8核[email protected],SE9-16为8核[email protected],SE9-8为6核[email protected],PCIe上的性能由于处理器的不同可能存在较大差异;
- 图片分辨率对解码时间影响较大,推理结果对后处理时间影响较大,不同的测试图片可能存在较大差异,不同的阈值对后处理时间影响较大。