Skip to content

Y77GitHub/2022_finvcup_baseline

 
 

Repository files navigation

第七届信也科技杯baseline

这是第七届信也科技杯-欺诈用户风险识别的baseline。
请在比赛网站上下载"初赛数据集.zip"文件,将zip文件中的"phase1_gdata.npz"放到路径'./xydata/raw'中。
baseline代码中对"phase1_gdata.npz"的train_mask,随机按照6/4的比例将其划分为train/valid dataset。

Environments

Implementing environment:

  • python = 3.7.6

  • numpy = 1.21.2

  • pytorch = 1.6.0

  • torch_geometric = 1.7.2

  • torch_scatter = 2.0.8

  • torch_sparse = 0.6.9

  • GPU: Tesla V100 32G

Training

  • MLP
python train.py --model mlp  --epochs 200 --device 0
python inference.py --model mlp --device 0
  • GCN
python train.py --model gcn  --epochs 200 --device 0
python inference.py --model gcn --device 0
  • GraphSAGE
python train.py --model sage  --epochs 200 --device 0
python inference.py --model sage --device 0
  • GraphSAGE (NeighborSampler)
python train_mini_batch.py --model sage_neighsampler --epochs 200 --device 0
python inference_mini_batch.py --model sage_neighsampler --device 0
  • GAT (NeighborSampler)
python train_mini_batch.py --model gat_neighsampler --epochs 200 --device 0
python inference_mini_batch.py --model gat_neighsampler --device 0
  • GATv2 (NeighborSampler)
python train_mini_batch.py --model gatv2_neighsampler --epochs 200 --device 0
python inference_mini_batch.py --model gatv2_neighsampler --device 0

Results:

在以上的依赖环境中,baseline中几个模型效果如下:

Methods Train AUC Valid AUC Test AUC
MLP 0.7305 0.7328 0.7283
GCN 0.7272 0.7336 0.7333
GraphSAGE 0.7799 0.7798 0.7727
GraphSAGE (NeighborSampler) 0.7916 0.7875 0.7810
GAT (NeighborSampler) 0.7462 0.7411 0.7329
GATv2 (NeighborSampler) 0.7818 0.7804 0.7733

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%