forked from molecularsets/moses
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
164 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
import pandas as pd | ||
from collections import OrderedDict | ||
import argparse | ||
import numpy as np | ||
import re | ||
|
||
|
||
def get_parser(): | ||
parser = argparse.ArgumentParser( | ||
"Prints a table from metrics files\n" | ||
) | ||
parser.add_argument( | ||
'--config', '-c', type=str, default='config.csv', | ||
help='Path to the config csv with `name` and `path` columns. ' | ||
'`name` is a model name, and ' | ||
'`path` is a path to metrics file`' | ||
) | ||
parser.add_argument( | ||
'--extension', '-e', type=str, | ||
choices=['html', 'latex', 'csv'], | ||
default='csv', | ||
help='Format of a table' | ||
) | ||
parser.add_argument( | ||
'--output', '-o', type=str, | ||
default='output.csv', | ||
help='Path to the output table' | ||
) | ||
parser.add_argument( | ||
'--precision', '-p', type=int, | ||
default=4, help='Precision in final table' | ||
) | ||
return parser | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = get_parser() | ||
config, unknown = parser.parse_known_args() | ||
if len(unknown) != 0: | ||
raise ValueError("Unknown argument " + unknown[0]) | ||
|
||
metrics = OrderedDict() | ||
models = pd.read_csv(config.config) | ||
for path, name in zip(models['path'], models['name']): | ||
metrics[name] = pd.read_csv(path, header=None) | ||
metrics[name] = {x[1][0]: x[1][1] | ||
for x in metrics[name].iterrows()} | ||
metrics[name]['Model'] = name | ||
metrics = pd.DataFrame(metrics).T | ||
metrics = metrics.rename(columns={'valid': 'Valid', | ||
'unique@1000': 'Unique@1k', | ||
'unique@10000': 'Unique@10k'}) | ||
targets = ['Model', 'Valid', 'Unique@1k', | ||
'Unique@10k', 'FCD/Test', 'FCD/TestSF', | ||
'SNN/Test', 'SNN/TestSF', 'Frag/Test', | ||
'Frag/TestSF', 'Scaf/Test', 'Scaf/TestSF', | ||
'IntDiv', 'IntDiv2', 'Filters'] | ||
directions = [2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1] | ||
metrics = metrics[targets] | ||
|
||
bf_pattern = { | ||
'csv': '{}', | ||
'html': '<b>{}</b>', | ||
'latex': r'!bf1! {} !bf2!' | ||
}[config.extension] | ||
it_pattern = { | ||
'csv': '{}', | ||
'html': '<i>{}</i>', | ||
'latex': r'!it1! {} !it2!' | ||
}[config.extension] | ||
|
||
arrow = { | ||
'csv': [' (↓)', ' (↑)', ''], | ||
'html': [' (↓)', ' (↑)', ''], | ||
'latex': [r' ($\downarrow$)', r' ($\uparrow$)', ''] | ||
}[config.extension] | ||
|
||
for col, d in zip(targets[1:], directions[1:]): | ||
metrics[col] = metrics[col] \ | ||
.astype(float) \ | ||
.round(config.precision) | ||
max_val = (2 * d - 1) * np.max( | ||
[(2 * d - 1) * m for m, n in zip(metrics[col], | ||
metrics['Model']) | ||
if n != 'Train']) | ||
metrics[col] = [str(x) if x != max_val or n == 'Train' | ||
else bf_pattern.format(x) | ||
for x, n in zip(metrics[col], | ||
metrics['Model'])] | ||
for col in targets[::-1]: | ||
metrics[col] = [it_pattern.format(x) | ||
if n == 'Train' else x | ||
for x, n in zip(metrics[col], | ||
metrics['Model'])] | ||
|
||
metrics = metrics.round(config.precision) | ||
if config.extension == 'csv': | ||
metrics.to_csv(config.output, index=None) | ||
elif config.extension == 'html': | ||
html = metrics.to_html(index=None) | ||
html = re.sub('<', '<', html) | ||
html = re.sub('>', '>', html) | ||
header, footer = html.split('</thead>') | ||
header += '</thead>' | ||
header = header.split('\n') | ||
values = [x.strip()[4:-5] | ||
for x in header[3:-2]] | ||
spans = ['rowspan' if '/' not in x else 'colspan' | ||
for x in values] | ||
first_header = [x.split('/')[0] for x in values] | ||
second_header = [x.split('/')[1] for x in values | ||
if '/' in x] | ||
new_header = header[:3] | ||
i = 0 | ||
total = 0 | ||
while i < len(first_header): | ||
h = first_header[i] | ||
new_header.append( | ||
' ' * 6 + '<th {}="2">{}{}</th>'.format( | ||
spans[i], h, arrow[directions[total]] | ||
) | ||
) | ||
i += 1 | ||
total += 1 | ||
while i < len(first_header) - 1 and first_header[i] == h: | ||
i += 1 | ||
new_header.extend([' </tr>', | ||
' <tr>']) | ||
for h in second_header: | ||
new_header.append(' ' * 6 + '<th>{}</th>'.format(h)) | ||
new_header.extend(header[-2:]) | ||
header = '\n'.join(new_header) | ||
html = header + footer | ||
html = ('<html>\n<head>\n<meta charset="utf-8">\n</head>\n' + | ||
html + | ||
'\n</html>') | ||
with open(config.output, 'w', encoding='utf-8') as f: | ||
f.write(html) | ||
elif config.extension == 'latex': | ||
latex = metrics.to_latex(index=None) | ||
latex = latex.split('\n') | ||
header1 = [r'\multirow{2}{*}{' + x.strip() + arrow[d] + '} ' | ||
if '/' not in x | ||
else r'\multicolumn{2}{c}{' + x.split('/')[0].strip() + | ||
arrow[d] + '}' | ||
for x, d in zip(latex[2].strip()[:-2].split('&'), | ||
directions)] | ||
header1 = [x for i, x in enumerate(header1) | ||
if i == 0 or header1[i - 1] != header1[i]] | ||
header2 = [x.split('/')[1].strip() | ||
if '/' in x | ||
else '' | ||
for x, d in zip(latex[2].strip()[:-2].split('&'), | ||
directions)] | ||
|
||
latex[2] = ' & '.join(header1) + r'\\' | ||
latex.insert(3, ' & '.join(header2) + r'\\') | ||
latex = '\n'.join(latex) | ||
latex = re.sub(r'!bf1!', r'{\\bf', latex) | ||
latex = re.sub(r'!bf2!', '}', latex) | ||
latex = re.sub(r'!it1!', r'{\\it', latex) | ||
latex = re.sub(r'!it2!', '}', latex) | ||
with open(config.output, 'w') as f: | ||
f.write(latex) |