Skip to content
/ CARS Public
forked from zhaohui-yang/CARS

Pytorch code for paper: CARS: Continuous Evolution for Efficient Neural Architecture Search

Notifications You must be signed in to change notification settings

YunheWang/CARS

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 

Repository files navigation

CARS

Pytorch code for paper: CARS: Continuous Evolution for Efficient Neural Architecture Search

By Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi, Chao Xu, Chunjing Xu, Qi Tian, Chang Xu.

Huawei Noah's Ark Lab.

All the searching and training codes will be uploaded soon.

Introduction

This repository contains the codes of CARS searching by considering acc + (params/latency).

Results

Architectures

CARS_A = Genotype(normal=[('skip_connect', 0), ('sep_conv_5x5', 1), ('max_pool_3x3', 0), ('avg_pool_3x3', 1), ('max_pool_3x3', 0), ('max_pool_3x3', 1), ('sep_conv_3x3', 0), ('dil_conv_5x5', 2)], normal_concat=range(2, 6), reduce=[('avg_pool_3x3', 0), ('max_pool_3x3', 1), ('max_pool_3x3', 0), ('skip_connect', 1), ('max_pool_3x3', 0), ('dil_conv_5x5', 1), ('dil_conv_5x5', 0), ('skip_connect', 2)], reduce_concat=range(2, 6))

CARS_B = Genotype(normal=[('sep_conv_5x5', 0), ('dil_conv_3x3', 1), ('sep_conv_3x3', 0), ('avg_pool_3x3', 2), ('dil_conv_3x3', 0), ('max_pool_3x3', 1), ('avg_pool_3x3', 0), ('skip_connect', 1)], normal_concat=range(2, 6), reduce=[('sep_conv_5x5', 0), ('skip_connect', 1), ('sep_conv_3x3', 0), ('max_pool_3x3', 1), ('avg_pool_3x3', 0), ('avg_pool_3x3', 1), ('dil_conv_3x3', 3), ('max_pool_3x3', 0)], reduce_concat=range(2, 6))

CARS_C = Genotype(normal=[('sep_conv_5x5', 0), ('skip_connect', 1), ('skip_connect', 0), ('skip_connect', 1), ('skip_connect', 0), ('max_pool_3x3', 1), ('sep_conv_5x5', 0), ('sep_conv_3x3', 1)], normal_concat=range(2, 6), reduce=[('max_pool_3x3', 1), ('max_pool_3x3', 0), ('sep_conv_5x5', 0), ('sep_conv_5x5', 1), ('dil_conv_5x5', 0), ('max_pool_3x3', 1), ('sep_conv_5x5', 0), ('dil_conv_3x3', 1)], reduce_concat=range(2, 6))

CARS_D = Genotype(normal=[('sep_conv_5x5', 0), ('dil_conv_3x3', 1), ('skip_connect', 0), ('avg_pool_3x3', 1), ('skip_connect', 0), ('max_pool_3x3', 1), ('sep_conv_5x5', 0), ('sep_conv_3x3', 1)], normal_concat=range(2, 6), reduce=[('max_pool_3x3', 1), ('max_pool_3x3', 0), ('max_pool_3x3', 0), ('sep_conv_3x3', 1), ('dil_conv_5x5', 0), ('max_pool_3x3', 1), ('sep_conv_5x5', 0), ('dil_conv_3x3', 1)], reduce_concat=range(2, 6))

CARS_E = Genotype(normal=[('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('skip_connect', 0), ('sep_conv_3x3', 2), ('avg_pool_3x3', 1), ('sep_conv_3x3', 2), ('skip_connect', 3), ('skip_connect', 4)], normal_concat=range(2, 6), reduce=[('skip_connect', 0), ('dil_conv_3x3', 1), ('avg_pool_3x3', 0), ('skip_connect', 2), ('sep_conv_3x3', 2), ('max_pool_3x3', 0), ('avg_pool_3x3', 0), ('sep_conv_3x3', 4)], reduce_concat=range(2, 6))

CARS_F = Genotype(normal=[('skip_connect', 0), ('sep_conv_5x5', 1), ('sep_conv_5x5', 0), ('skip_connect', 2), ('sep_conv_5x5', 3), ('max_pool_3x3', 0), ('skip_connect', 0), ('sep_conv_3x3', 1)], normal_concat=range(2, 6), reduce=[('avg_pool_3x3', 0), ('sep_conv_5x5', 1), ('dil_conv_3x3', 0), ('dil_conv_5x5', 1), ('sep_conv_5x5', 1), ('skip_connect', 2), ('max_pool_3x3', 0), ('max_pool_3x3', 1)], reduce_concat=range(2, 6))

CARS_G = Genotype(normal=[('max_pool_3x3', 0), ('dil_conv_5x5', 1), ('sep_conv_3x3', 0), ('skip_connect', 1), ('dil_conv_5x5', 0), ('sep_conv_5x5', 1), ('avg_pool_3x3', 0), ('sep_conv_3x3', 1)], normal_concat=range(2, 6), reduce=[('max_pool_3x3', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('sep_conv_5x5', 1), ('sep_conv_3x3', 0), ('skip_connect', 1), ('avg_pool_3x3', 0), ('dil_conv_3x3', 1)], reduce_concat=range(2, 6))

CARS_H = Genotype(normal=[('sep_conv_5x5', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('dil_conv_5x5', 2), ('avg_pool_3x3', 0), ('skip_connect', 1), ('sep_conv_5x5', 2), ('max_pool_3x3', 0)], normal_concat=range(2, 6), reduce=[('sep_conv_5x5', 0), ('max_pool_3x3', 1), ('sep_conv_3x3', 0), ('skip_connect', 1), ('dil_conv_3x3', 2), ('max_pool_3x3', 0), ('sep_conv_5x5', 0), ('avg_pool_3x3', 3)], reduce_concat=range(2, 6))

CARS_I = Genotype(normal=[('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('skip_connect', 0), ('sep_conv_5x5', 1), ('skip_connect', 2), ('sep_conv_3x3', 3), ('sep_conv_3x3', 0), ('dil_conv_5x5', 4)], normal_concat=range(2, 6), reduce=[('dil_conv_3x3', 0), ('skip_connect', 1), ('max_pool_3x3', 0), ('max_pool_3x3', 2), ('skip_connect', 1), ('sep_conv_5x5', 3), ('dil_conv_3x3', 1), ('max_pool_3x3', 4)], reduce_concat=range(2, 6))

CARS_Lat_A = Genotype(normal=[('skip_connect',0),('max_pool_3x3',1),('avg_pool_3x3',0),('max_pool_3x3',1),('skip_connect',2),('skip_connect',3),('skip_connect',2),('skip_connect',3)],normal_concat=range(2,6),reduce=[('skip_connect',0),('sep_conv_5x5',1),('dil_conv_5x5',0),('max_pool_3x3',2),('skip_connect',0),('max_pool_3x3',1),('skip_connect',1),('avg_pool_3x3',4)],reduce_concat=range(2,6))

CARS_Lat_B = Genotype(normal=[('skip_connect',0),('skip_connect',1),('skip_connect',1),('dil_conv_3x3',2),('skip_connect',2),('skip_connect',3),('max_pool_3x3',0),('max_pool_3x3',2)],normal_concat=range(2,6),reduce=[('max_pool_3x3',0),('max_pool_3x3',1),('skip_connect',1),('max_pool_3x3',0),('sep_conv_3x3',0),('max_pool_3x3',1),('dil_conv_5x5',0),('avg_pool_3x3',2)],reduce_concat=range(2,6))

CARS_Lat_C = Genotype(normal=[('skip_connect',0),('avg_pool_3x3',1),('skip_connect',0),('skip_connect',1),('max_pool_3x3',1),('skip_connect',3),('dil_conv_3x3',2),('skip_connect',4)],normal_concat=range(2,6),reduce=[('skip_connect',0),('sep_conv_5x5',1),('avg_pool_3x3',1),('sep_conv_5x5',2),('max_pool_3x3',0),('max_pool_3x3',1),('dil_conv_5x5',2),('skip_connect',4)],reduce_concat=range(2,6))

CARS_Lat_D = Genotype(normal=[('sep_conv_3x3',0),('skip_connect',1),('skip_connect',0),('skip_connect',1),('skip_connect',1),('avg_pool_3x3',3),('dil_conv_3x3',2),('skip_connect',4)],normal_concat=range(2,6),reduce=[('dil_conv_5x5',0),('sep_conv_5x5',1),('avg_pool_3x3',1),('sep_conv_5x5',2),('max_pool_3x3',0),('max_pool_3x3',1),('dil_conv_5x5',2),('skip_connect',4)],reduce_concat=range(2,6))

CARS_Lat_E = Genotype(normal=[('dil_conv_5x5',0),('skip_connect',1),('skip_connect',1),('avg_pool_3x3',2),('skip_connect',1),('avg_pool_3x3',2),('skip_connect',0),('max_pool_3x3',1)],normal_concat=range(2,6),reduce=[('skip_connect',0),('dil_conv_3x3',1),('sep_conv_3x3',0),('sep_conv_3x3',2),('dil_conv_3x3',0),('avg_pool_3x3',3),('sep_conv_3x3',1),('sep_conv_5x5',2)],reduce_concat=range(2,6))

CARS_Lat_F = Genotype(normal=[('sep_conv_5x5',0),('skip_connect',1),('skip_connect',0),('avg_pool_3x3',1),('dil_conv_3x3',1),('max_pool_3x3',0),('skip_connect',0),('skip_connect',1)],normal_concat=range(2,6),reduce=[('sep_conv_5x5',0),('max_pool_3x3',1),('sep_conv_5x5',1),('skip_connect',2),('sep_conv_5x5',0),('sep_conv_5x5',1),('sep_conv_5x5',3),('dil_conv_3x3',4)],reduce_concat=range(2,6))

CARS_Lat_G = Genotype(normal=[('sep_conv_5x5',0),('skip_connect',1),('sep_conv_3x3',0),('sep_conv_5x5',2),('dil_conv_3x3',1),('max_pool_3x3',0),('skip_connect',0),('skip_connect',1)],normal_concat=range(2,6),reduce=[('sep_conv_5x5',0),('max_pool_3x3',1),('sep_conv_3x3',0),('avg_pool_3x3',2),('sep_conv_5x5',0),('sep_conv_5x5',1),('sep_conv_5x5',3),('dil_conv_3x3',4)],reduce_concat=range(2,6))

About

Pytorch code for paper: CARS: Continuous Evolution for Efficient Neural Architecture Search

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published