Detecting anomalous traces of microservice system.
Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin Zhang, Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, Dan Pei. Unsupervised Detection of Microservice Trace Anomalies through Service-Level Deep Bayesian Networks". 31th International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2020
paper download(论文下载):https://netman.aiops.org/wp-content/uploads/2020/09/%E5%88%98%E5%B9%B3issre.pdf
TensorFlow >= 1.5
pandas
yaml
tfsnippet (tfsnippet package is copied from tfsnippet project:https://github.com/haowen-xu/tfsnippet)
TraceAnomaly can be run directly in the Docker image: silence1990/docker_for_traceanomaly:latest
docker pull silence1990/docker_for_traceanomaly:latest
Training set: train_ticket/train.zip
Test normal traces: train_ticket/test_normal.zip
Test anomalous traces: train_ticket/test_abnormal.zip
run.sh