Skip to content

ZJU-LLMs/Awesome-LoRAs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 

Repository files navigation

A Survey on LoRA of Large Language Models Awesome

A curated list of papers and resources about LoRA of Large Language Models based on our survey paper: A Survey on LoRA of Large Language Models.

This repo will be continuously updated. Don't forget to star it and keep tuned!

Please cite the paper in Citations if you find the resource helpful for your research. Thanks!

lora

LoRA of LLMs

Low-Rank Adaptation(LoRA), which updates the dense neural network layers with pluggable low-rank matrices, is one of the best performed parameter efficient fine-tuning paradigms. Furthermore, it has significant advantages in cross-task generalization and privacy-preserving. Hence, LoRA has gained much attention recently, and the number of related literature demonstrates exponential growth. It is necessary to conduct a comprehensive overview of the current progress on LoRA. This survey categorizes and reviews the progress from the perspectives of (1) downstream adaptation improving variants that improve LoRA's performance on downstream tasks; (2) cross-task generalization methods that mix multiple LoRA plugins to achieve cross-task generalization; (3) efficiency-improving methods that boost the computation-efficiency of LoRA; (4) data privacy-preserving methods that use LoRA in federated learning; (5) application. Besides, this survey also discusses the future directions in this field.

Contents

Low-Rank Adaptation

  1. LoRA: Low-Rank Adaptation of Large Language Models. ICLR
    Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen [PDF] [Code], 2022

Theoretical Analysis

  1. A Kernel-Based View of Language Model Fine-Tuning. ICML
    Malladi S., Wettig A., Yu D., Chen D., Arora S. [PDF] [Code], 2023

  2. The Impact of LoRA on the Emergence of Clusters in Transformers. arXiv
    Koubbi H., Boussard M., Hernandez L. [PDF] [Code], 2024

  3. LoRA Training in the NTK Regime Has No Spurious Local Minima. arXiv
    Jang U., Lee J. D., Ryu E. K. [PDF] [Code], 2024

  4. Asymmetry in Low-Rank Adapters of Foundation Models. arXiv
    Zhu J., Greenewald K. H., Nadjahi K., Ocáriz Borde d H. S., Gabrielsson R. B., Choshen L., Ghassemi M., Yurochkin M., Solomon J. [PDF] [Code], 2024

  5. The Expressive Power of Low-Rank Adaptation. arXiv
    Zeng Y., Lee K. [PDF] [Code], 2023

Beyond Fine-tuning

  1. ReLoRA: High-rank training through low-rank updates. NeurIPS Workshop.
    Lialin V, Muckatira S, Shivagunde N, Rumshisky A. [PDF] [Code], 2023

  2. MoRA: High-rank updating for parameter-efficient fine-tuning. arXiv
    Jiang T, Huang S, Luo S, Zhang Z, Huang H, Wei F, Deng W, Sun F, Zhang Q, Wang D, others. [PDF] [Code], 2024

  3. Training neural networks from scratch with parallel low-rank adapters. arXiv
    Huh M, Cheung B, Bernstein J, Isola P, Agrawal P. [PDF] [Code], 2024

  4. InfLoRA: Interference-free low-rank adaptation for continual learning. arXiv
    Liang Y, Li W. [PDF] [Code], 2024

  5. GS-LoRA: Continual forgetting for pre-trained vision models. arXiv
    Zhao H, Ni B, Wang H, Fan J, Zhu F, Wang Y, Chen Y, Meng G, Zhang Z. [PDF] [Code], 2024

  6. I-LoRA: Analyzing and reducing catastrophic forgetting in parameter-efficient tuning. arXiv
    Ren W, Li X, Wang L, Zhao T, Qin W. [PDF] [Code], 2024

  7. LongLoRA: Efficient fine-tuning of long-context large language models. arXiv
    Y. Chen, S. Qian, H. Tang, X. Lai, Z. Liu, S. Han, J. Jia. [PDF] [Code], 2023

  8. SinkLoRA: Enhanced efficiency and chat capabilities for long-context large language models. arXiv
    Zhang H. [PDF] [Code], 2023

Downstream Adaptation Improving

Breaking the Low-rank Bottleneck

Stacking LoRAs along Fine-tuning

  1. ReLoRA: High-Rank Training Through Low-Rank Updates. NeurIPS Workshop
    Lialin V., Muckatira S., Shivagunde N., Rumshisky A. [PDF] [Code], 2023

  2. Chain of LoRA: Efficient fine-tuning of language models via residual learning. arXiv
    Xia W, Qin C, Hazan E. [PDF], 2024

  3. Mini-ensemble low-rank adapters for parameter-efficient fine-tuning. arXiv
    Ren P, Shi C, Wu S, Zhang M, Ren Z, Rijke d M, Chen Z, Pei J. [PDF] [Code], 2024

Updating as gradient compressor

  1. FLoRA: Low-rank adapters are secretly gradient compressors. arXiv
    Hao Y, Cao Y, Mou L. [PDF] [Code], 2024

Co-learning LLM and LoRA

  1. Delta-LoRA: Fine-tuning high-rank parameters with the delta of low-rank matrices. arXiv Zi B, Qi X, Wang L, Wang J, Wong K, Zhang L. [PDF], 2023

Dynamic Rank Allocation

SVD-Based Methods

  1. AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning. ICLR 2023
    Zhang Q., Chen M., Bukharin A., He P., Cheng Y., Chen W., Zhao T. [PDF] [Code], 2023

  2. SaLoRA: Structure-aware low-rank adaptation for parameter-efficient fine-tuning. Mathematics
    Hu Y, Xie Y, Wang T, Chen M, Pan Z. [PDF], 2023

  3. IncreLoRA: Incremental Parameter Allocation Method for Parameter-Efficient Fine-Tuning. arXiv
    Zhang F., Li L., Chen J., Jiang Z., Wang B., Qian Y. [PDF] [Code], 2023

SRD-Based Methods

  1. DoRA: Enhancing parameter-efficient fine-tuning with dynamic rank distribution. arXiv
    Mao Y, Huang K, Guan C, Bao G, Mo F, Xu J. [PDF] [Code], 2024

  2. AutoLoRA: Automatically tuning matrix ranks in low-rank adaptation based on meta learning. arXiv
    Zhang R, Qiang R, Somayajula S A, Xie P. [PDF], 2024

  3. SoRA: Sparse low-rank adaptation of pre-trained language models. EMNLP
    Ding N, Lv X, Wang Q, Chen Y, Zhou B, Liu Z, Sun M. [PDF] [Code], 2023

  4. ALoRA: Allocating low-rank adaptation for fine-tuning large language models. arXiv
    Liu Z, Lyn J, Zhu W, Tian X, Graham Y. [PDF], 2024

Rank Sampling-Based Methods

  1. DyLoRA: Parameter-Efficient Tuning of Pre-trained Models Using Dynamic Search-Free Low-Rank Adaptation. EACL 2023
    Valipour M., Rezagholizadeh M., Kobyzev I., Ghodsi A. [PDF] [Code], 2023

Optimizing the Learning Procedure

Initialization Improvement

  1. The impact of initialization on LoRA finetuning dynamics. arXiv
    Hayou S, Ghosh N, Yu B. [PDF], 2024

  2. PISSA: Principal singular values and singular vectors adaptation of large language models. arXiv
    Meng F, Wang Z, Zhang M. [PDF] [Code], 2024

  3. MiLoRA: Harnessing minor singular components for parameter-efficient LLM finetuning. arXiv
    Wang H, Xiao Z, Li Y, Wang S, Chen G, Chen Y. [PDF], 2024

  4. Mixture-of-Subspaces in Low-Rank Adaptation. arXiv
    Wu T, Wang J, Zhao Z, Wong N [PDF] [Code], 2024

Gradient Update Optimization

  1. Riemannian preconditioned LoRA for fine-tuning foundation models. arXiv
    Zhang F, Pilanci M. [PDF] [Code], 2024

  2. LoRA+: Efficient low rank adaptation of large models. arXiv
    Hayou S, Ghosh N, Yu B. [PDF] [Code], 2024

  3. ResLoRA: Identity residual mapping in low-rank adaption. arXiv
    Shi S, Huang S, Song M, Li Z, Zhang Z, Huang H, Wei F, Deng W, Sun F, Zhang Q. [PDF] [Code], 2024

  4. SIBO: A simple booster for parameter-efficient fine-tuning. arXiv
    Wen Z, Zhang J, Fang Y. [PDF], 2024 Hayou S, Ghosh N, Yu B. 2024

Overfitting Mitigation

  1. BiLoRA: A bi-level optimization framework for overfitting-resilient low-rank adaptation of large pre-trained models. arXiv
    Qiang R, Zhang R, Xie P. [PDF], 2024

  2. LoRA dropout as a sparsity regularizer for overfitting control. arXiv
    Lin Y, Ma X, Chu X, Jin Y, Yang Z, Wang Y, Mei H. [PDF], 2024

  3. LoRA meets dropout under a unified framework. arXiv
    Wang S, Chen L, Jiang J, Xue B, Kong L, Wu C. [PDF] [Code], 2024

Combining with other Learning Paradigms

  1. Laplace-LoRA: Bayesian low-rank adaptation for large language models. arXiv
    Yang A X, Robeyns M, Wang X, Aitchison L. [PDF] [Code], 2023

  2. PILLOW: Enhancing efficient instruction fine-tuning via prompt matching. EMNLP
    Qi Z, Tan X, Shi S, Qu C, Xu Y, Qi Y. [PDF], 2023

  3. STAR: Constraint LoRA with dynamic active learning for data-efficient fine-tuning of large language models. arXiv
    Zhang L, Wu J, Zhou D, Xu G. [PDF] [Code], 2024

Cross-task Generalization

Mixture with Manually Designed Weights

  1. LoRA Ensembles for large language model fine-tuning. arXiv
    Wang X, Aitchison L, Rudolph M. [PDF], 2023

  2. LoRAretriever: Input-aware LoRA retrieval and composition for mixed tasks in the wild. arXiv
    Zhao Z, Gan L, Wang G, Zhou W, Yang H, Kuang K, Wu F. [PDF], 2024

  3. Token-level adaptation of LoRA adapters for downstream task generalization. AICCC
    Belofsky J. [PDF] [Code], 2023

  4. Effective and parameter-efficient reusing fine-tuned models. arXiv
    Jiang W, Lin B, Shi H, Zhang Y, Li Z, Kwok J T.[PDF] [Code], 2023

  5. Composing parameter-efficient modules with arithmetic operations. arXiv
    Zhang J, Chen S, Liu J, He J.[PDF] [Code], 2023

  6. Task arithmetic with LoRA for continual learning. arXiv
    Chitale R, Vaidya A, Kane A, Ghotkar A. [PDF], 2023

Mixture with Learnt Weights

  1. LoRAHub: Efficient cross-task generalization via dynamic LoRA composition. arXiv
    Huang C, Liu Q, Lin B Y, Pang T, Du C, Lin M. [PDF] [Code], 2023

  2. ComPEFT: Compression for communicating parameter efficient updates via sparsification and quantization. arXiv
    Yadav P, Choshen L, Raffel C, Bansal M. [PDF] [Code], 2023

  3. L-LoRA: Parameter efficient multi-task model fusion with partial linearization. arXiv
    Tang A, Shen L, Luo Y, Zhan Y, Hu H, Du B, Chen Y, Tao D. [PDF] [Code], 2023

  4. MixLoRA: Multimodal instruction tuning with conditional mixture of LoRA. arXiv
    Shen Y, Xu Z, Wang Q, Cheng Y, Yin W, Huang L. [PDF], 2024

  5. X-LoRA: Mixture of low-rank adapter experts, a flexible framework for large language models with applications in protein mechanics and design. arXiv
    Buehler E L, Buehler M J. [PDF], 2024

Mixture of LoRA Experts

  1. MoRAL: MoE augmented LoRA for LLMs’ lifelong learning. arXiv
    Yang S, Ali M A, Wang C, Hu L, Wang D. [PDF], 2024

  2. LoRAMoE: Alleviate world knowledge forgetting in large language models via MoE-style plugin. arXiv
    Dou S, Zhou E, Liu Y, Gao S, Zhao J, Shen W, Zhou Y, Xi Z, Wang X, Fan X, Pu S, Zhu J, Zheng R, Gui T, Zhang Q, Huang X. [PDF] [Code], 2023

  3. MoCLE: Mixture of cluster-conditional LoRA experts for vision-language instruction tuning. arXiv
    Gou Y, Liu Z, Chen K, Hong L, Xu H, Li A, Yeung D, Kwok J T, Zhang Y. [PDF][Code], 2023

  4. MOELoRA: An MoE-based parameter efficient fine-tuning method for multi-task medical applications. arXiv
    Liu Q, Wu X, Zhao X, Zhu Y, Xu D, Tian F, Zheng Y. [PDF] [Code], 2023

  5. Mixture-of-LoRAs: An efficient multitask tuning method for large language models. LREC/COLING
    Feng W, Hao C, Zhang Y, Han Y, Wang H. [PDF], 2024

  6. MultiLoRA: Democratizing LoRA for better multi-task learning. arXiv
    Wang Y, Lin Y, Zeng X, Zhang G. [PDF], 2023

  7. MLoRE: Multi-task dense prediction via mixture of low-rank experts. arXiv
    Yang Y, Jiang P, Hou Q, Zhang H, Chen J, Li B. [PDF] [Code], 2024

  8. MTLoRA: Low-rank adaptation approach for efficient multi-task learning. CVPR
    Agiza A R SN. M. [PDF] [Code], 2024

  9. MoLA: Higher layers need more LoRA experts. arXiv
    Gao C, Chen K, Rao J, Sun B, Liu R, Peng D, Zhang Y, Guo X, Yang J, Subrahmanian V S. [PDF] [Code], 2024

  10. LLaVA-MoLE: Sparse mixture of LoRA experts for mitigating data conflicts in instruction finetuning MLLMs. arXiv
    Chen S, Jie Z, Ma L. [PDF], 2024

  11. SiRA: Sparse mixture of low rank adaptation. arXiv
    Zhu Y, Wichers N, Lin C, Wang X, Chen T, Shu L, Lu H, Liu C, Luo L, Chen J, Meng L. [PDF], 2023

  12. Octavius: Mitigating task interference in MLLMs via MoE. arXiv
    Chen Z, Wang Z, Wang Z, Liu H, Yin Z, Liu S, Sheng L, Ouyang W, Qiao Y, Shao J. [PDF] [Code], 2023

  13. Fast LoRA: Batched low-rank adaptation of foundation models. arXiv
    Wen Y, Chaudhuri S. [PDF], 2023

  14. I-LoRA: Analyzing and reducing catastrophic forgetting in parameter-efficient tuning. arXiv
    Ren W, Li X, Wang L, Zhao T, Qin W. [PDF] [Code], 2024

Efficiency Improving

Parameter Reduction

Parameter Freezing

  1. LoRA-SP: Streamlined Partial Parameter Adaptation for Resource Efficient Fine-Tuning of Large Language Models arXiv
    Y. Wu, Y. Xiang, S. Huo, Y. Gong, P. Liang. [PDF] 2024

  2. LoRA-FA: Memory-Efficient Low-Rank Adaptation for Large Language Models Fine-Tuning arXiv
    L. Zhang, L. Zhang, S. Shi, X. Chu, B. Li. [PDF] 2023

  3. AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large Models arXiv
    Z. Liu, S. Kundu, A. Li, J. Wan, L. Jiang, P. A. Beerel. [PDF] 2024

  4. DropBP: Accelerating Fine-Tuning of Large Language Models by Dropping Backward Propagation arXiv
    S. Woo, B. Park, B. Kim, M. Jo, S. Kwon, D. Jeon, D. Lee. [PDF] [Code] 2024

  5. LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters arXiv
    K. Bałazy, M. Banaei, K. Aberer, J. Tabor. [PDF] [Code] 2024

  6. BYOM-LoRA: Effective and Parameter-Efficient Reusing Fine-Tuned Models arXiv
    W. Jiang, B. Lin, H. Shi, Y. Zhang, Z. Li, J. T. Kwok. [PDF] 2023

Parameter Pruning

  1. LoRA-Drop: Efficient LoRA Parameter Pruning Based on Output Evaluation arXiv
    H. Zhou, X. Lu, W. Xu, C. Zhu, T. Zhao. [PDF] 2024

  2. LoRAPrune: Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning arXiv
    M. Zhang, H. Chen, C. Shen, Z. Yang, L. Ou, X. Zhuang, B. Zhu. [PDF] 2023

  3. LoRAShear: Efficient Large Language Model Structured Pruning and Knowledge Recovery arXiv
    T. Chen, T. Ding, B. Yadav, I. Zharkov, L. Liang. [PDF] [Code]2023

  4. Parameter-Efficient Fine-Tuning with Layer Pruning on Free-Text Sequence-to-Sequence Modeling arXiv
    Y. Zhu, X. Yang, Y. Wu, W. Zhang. [PDF] [Code] 2023

Parameter Sharing

  1. VeRA: Vector-Based Random Matrix Adaptation arXiv
    D. J. Kopiczko, T. Blankevoort, Y. M. Asano. [PDF] 2023

  2. VB-LoRA: Extreme Parameter Efficient Fine-Tuning with Vector Banks arXiv
    Y. Li, S. Han, S. Ji. [PDF] [Code] 2024

  3. Parameter-Efficient Fine-Tuning with Discrete Fourier Transform arXiv
    Z. Gao, Q. Wang, A. Chen, Z. Liu, B. Wu, L. Chen, J. Li. [PDF] [Code] 2024

Parameter Quantization

PTQ-Based Methods

  1. QLoRA: Efficient Fine-Tuning of Quantized LLMs NeurIPS
    T. Dettmers, A. Pagnoni, A. Holtzman, L. Zettlemoyer. 2024 [PDF] [Code]

  2. QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models arXiv
    Y. Xu, L. Xie, X. Gu, X. Chen, H. Chang, H. Zhang, Z. Chen, X. Zhang, Q. Tian. 2023 [PDF] [Code]

QAT-Based Methods

  1. LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models arXiv
    Y. Li, Y. Yu, C. Liang, P. He, N. Karampatziakis, W. Chen, T. Zhao. [PDF] [Code] 2023

  2. ApiQ: Finetuning of 2-Bit Quantized Large Language Model arXiv
    B. Liao, C. Monz. [PDF] [Code] 2024

  3. L4Q: Parameter Efficient Quantization-Aware Training on Large Language Models via LoRA-Wise LSQ arXiv
    H. Jeon, Y. Kim, J. Kim. 2024 [PDF]

Parallel LoRA Computing Frameworks

Parallel Fine-tuning

  1. ASPEN: High-Throughput LoRA Fine-Tuning of Large Language Models with a Single GPU arXiv
    Z. Ye, D. Li, J. Tian, T. Lan, J. Zuo, L. Duan, Y. Jiang, J. Sha, K. Zhang, M. Tang. [PDF] [Code] 2023

Parallel Inference

  1. Punica: Multi-Tenant LoRA Serving MLSys
    L. Chen, Z. Ye, Y. Wu, D. Zhuo, L. Ceze, A. Krishnamurthy. [PDF] [Code] 2024

  2. S-LoRA: Serving Thousands of Concurrent LoRA Adapters arXiv
    Y. Sheng, S. Cao, D. Li, C. Hooper, N. Lee, S. Yang, C.-C. Chou, B. Zheng, K. Keutzer. [PDF] [Code] 2023

  3. CARASERVE: CPU-Assisted and Rank-Aware LoRA Serving for Generative LLM Inference arXiv
    S. Li, H. Lu, T. Wu, M. Yu, Q. Weng, X. Chen, Y. Shan, B. Yuan, W. Wang. [PDF] 2024

LoRA for Federated Learning

Data Heterogeneity

  1. SLoRA: Federated parameter efficient fine-tuning of language models. arXiv
    Babakniya S, Elkordy A R, Ezzeldin Y H, Liu Q, Song K, El-Khamy M, Avestimehr S. [PDF], 2023

  2. FeDeRA: Efficient fine-tuning of language models in federated learning leveraging weight decomposition. arXiv
    Yan Y, Tang S, Shi Z, Yang Q. [PDF], 2024

  3. Improving LoRA in privacy-preserving federated learning. arXiv
    Sun Y, Li Z, Li Y, Ding B. [PDF], 2024

Device Heterogeneity

  1. FedMS: Federated learning with mixture of sparsely activated foundation models. arXiv
    Wu P, Li K, Wang T, Wang F. [PDF], 2023

  2. Federated fine-tuning of large language models under heterogeneous language tasks and client resources. arXiv preprint
    Bai J, Chen D, Qian B, Yao L, Li Y. [PDF] [Code], 2024

  3. Federated fine-tuning of large language models under heterogeneous language tasks and client resources. arXiv
    Bai J, Chen D, Qian B, Yao L, Li Y. [PDF], 2024

  4. Heterogeneous LoRA for federated fine-tuning of on-device foundation models. NeurIPS
    Cho Y J, Liu L, Xu Z, Fahrezi A, Barnes M, Joshi G. [PDF], 2023

Model Heterogeneity

  1. pFedLoRA: Model-Heterogeneous Personalized Federated Learning with LoRA Tuning. arXiv
    Yi L, Yu H, Wang G, Liu X, Li X. [PDF], 2023

Parameter Privacy

  1. A fast, performant, secure distributed training framework for large language model. arXiv
    Huang W, Wang Y, Cheng A, Zhou A, Yu C, Wang L. [PDF], 2024

  2. PrivateLoRA for efficient privacy-preserving LLM. arXiv
    Wang Y, Lin Y, Zeng X, Zhang G. [PDF], 2023

Applications of LoRA

Language Tasks

Traditional NLP Task

  1. DialogueLLM: Context and Emotion Knowledge-Tuned Large Language Models for Emotion Recognition in Conversations. arXiv
    Zhang Y, Wang M, Wu Y, Tiwari P, Li Q, Wang B, Qin J. [PDF], 2024.

  2. Label Supervised LLaMA Finetuning. arXiv
    Li Z, Li X, Liu Y, Xie H, Li J, Wang F L, Li Q, Zhong X. [PDF][Code], 2023.

  3. Speaker Attribution in German Parliamentary Debates with QLoRA-Adapted Large Language Models. arXiv
    Bornheim T, Grieger N, Blaneck P G, Bialonski S. [PDF], 2024.

  4. AutoRE: Document-Level Relation Extraction with Large Language Models. arXiv
    Xue L, Zhang D, Dong Y, Tang J. [PDF] [Code], 2024.

  5. Steering Large Language Models for Machine Translation with Finetuning and In-Context Learning. EMNLP
    Alves D M, Guerreiro N M, Alves J, Pombal J, Rei R, Souza D J G C, Colombo P, Martins A F T. [PDF] [Code], 2023.

  6. Finetuning Large Language Models for Domain-Specific Machine Translation. arXiv
    Zheng J, Hong H, Wang X, Su J, Liang Y, Wu S. [PDF], 2024.

  7. Assessing Translation Capabilities of Large Language Models Involving English and Indian Languages. arXiv
    Mujadia V, Urlana A, Bhaskar Y, Pavani P A, Shravya K, Krishnamurthy P, Sharma D M. [PDF], 2023.

  8. Personalized LoRA for Human-Centered Text Understanding. AAAI
    Zhang Y, Wang J, Yu L, Xu D, Zhang X. [PDF] [Code], 2024.

  9. Y-tuning: An Efficient Tuning Paradigm for Large-Scale Pre-Trained Models via Label Representation Learning. Frontiers of Computer Science
    Liu Y, An C, Qiu X. [PDF], 2024.

Code Task

  1. Delving into parameter-efficient fine-tuning in code change learning: An empirical study. arXiv
    Liu S, Keung J, Yang Z, Liu F, Zhou Q, Liao Y. [PDF], 2024.

  2. An empirical study on jit defect prediction based on bert-style model. arXiv
    Guo Y, Gao X, Jiang B. [PDF], 2024.

  3. Parameter-efficient finetuning of transformers for source code. arXiv
    Ayupov S, Chirkova N. [PDF][Code], 2022.

  4. Repairllama: Efficient representations and fine-tuned adapters for program repair. arXiv
    Silva A, Fang S, Monperrus M. [PDF][Code], 2023.

  5. Analyzing the effectiveness of large language models on text-to-sql synthesis. arXiv
    Roberson R, Kaki G, Trivedi A. [PDF], 2024.

  6. Stelocoder: a decoder-only LLM for multi-language to python code translation. arXiv
    Pan J, Sadé A, Kim J, Soriano E, Sole G, Flamant S. [PDF][Code], 2023.

Model Alignment Task

  1. Perl: parameter efficient reinforcement learning from human feedback. arXiv
    H. Sidahmed, S. Phatale, A. Hutcheson, Z. Lin, Z. Chen, Z. Yu, J. Jin, R. Komarytsia, C. Ahlheim, Y. Zhu, S. Chaudhary, B. Li, S. Ganesh, B. Byrne, J. Hoffmann, H. Mansoor, W. Li, A. Rastogi, L. Dixon. [PDF][Code], 2024

  2. Efficient RLHF: reducing the memory usage of PPO. arXiv
    M. Santacroce, Y. Lu, H. Yu, Y. Li, Y. Shen. [PDF], 2023

  3. Exploring the impact of low-rank adaptation on the performance, efficiency, and regularization of RLHF. arXiv
    S. Sun, D. Gupta, M. Iyyer. [PDF][Code], 2023

  4. Dmoerm: Recipes of mixture-of-experts for effective reward modeling. arXiv
    S. Quan. [PDF][Code], 2024

  5. Improving reinforcement learning from human feedback with efficient reward model ensemble. arXiv
    S. Zhang, Z. Chen, S. Chen, Y. Shen, Z. Sun, C. Gan. [PDF], 2024

  6. Uncertainty-penalized reinforcement learning from human feedback with diverse reward lora ensembles. arXiv
    Y. Zhai, H. Zhang, Y. Lei, Y. Yu, K. Xu, D. Feng, B. Ding, H. Wang. [PDF], 2024

  7. Bayesian reward models for LLM alignment. arXiv
    A. X. Yang, M. Robeyns, T. Coste, J. Wang, H. Bou-Ammar, L. Aitchison. [PDF], 2024

  8. Bayesian low-rank adaptation for large language models. arXiv
    A. X. Yang, M. Robeyns, X. Wang, L. Aitchison. [PDF][Code], 2023

Vertical Domain Task

  1. Bioinstruct: Instruction tuning of large language models for biomedical natural language processing. arXiv
    Tran H, Yang Z, Yao Z, Yu H. [PDF][Code], 2023

  2. Parameterefficient fine-tuning of llama for the clinical domain. arXiv
    Gema A P, Daines L, Minervini P, Alex B. [PDF][Code], 2023

  3. Clinical camel: An open-source expert-level medical language model with dialogue-based knowledge encoding. arXiv
    Toma A, Lawler P R, Ba J, Krishnan R G, Rubin B B, Wang B. [PDF][Code], 2023

  4. Suryakiran at mediqa-sum 2023: Leveraging lora for clinical dialogue summarization. CLEF
    Suri K, Mishra P, Saha S, Singh A. [PDF], 2023

  5. Assertion detection large language model in-context learning lora fine-tuning. arXiv
    Ji Y, Yu Z, Wang Y. [PDF][Code], 2024

  6. Ivygpt: Interactive chinese pathway language model in medical domain. CAAI
    Wang R, Duan Y, Lam C, Chen J, Xu J, Chen H, Liu X, Pang P C, Tan T. [PDF], 2023

  7. SM70: A large language model for medical devices. arXiv
    Bhatti A, Parmar S, Lee S. [PDF], 2023

  8. Finllama: Financial sentiment classification for algorithmic trading applications. arXiv
    Konstantinidis T, Iacovides G, Xu M, Constantinides T G, Mandic D P. [PDF], 2024

  9. Financial news analytics using fine-tuned llama 2 GPT model. arXiv
    Pavlyshenko B M. [PDF], 2023

  10. Fingpt: Democratizing internet-scale data for financial large language models. arXiv
    Liu X, Wang G, Zha D. [PDF][Code], 2023

  11. Ra-cfgpt: Chinese financial assistant with retrievalaugmented large language model. Frontiers of Computer Science
    Li J, Lei Y, Bian Y, Cheng D, Ding Z, Jiang C. [PDF], 2024

  12. Db-gpt: Large language model meets database. Data Science and Engineering
    Zhou X, Sun Z, Li G. [PDF][Code], 2024

Vision Tasks

Image Generation Tasks

  1. Diffstyler: Diffusion-based localized image style transfer. arXiv
    Li S. [PDF], 2024

  2. Implicit style-content separation using b-lora. arXiv
    Frenkel Y, Vinker Y, Shamir A, Cohen-Or D. [PDF][Code], 2024

  3. Facechain: A playground for human-centric artificial intelligence generated content. arXiv
    Liu Y, Yu C, Shang L, He Y, Wu Z, Wang X, Xu C, Xie H, Wang W, Zhao Y, Zhu L, Cheng C, Chen W, Yao Y, Zhou W, Xu J, Wang Q, Chen Y, Xie X, Sun B. [PDF][Code], 2023

  4. Calliffusion: Chinese calligraphy generation and style transfer with diffusion modeling. arXiv
    Liao Q, Xia G, Wang Z. [PDF], 2023

  5. Style transfer to calvin and hobbes comics using stable diffusion. arXiv
    Shrestha S, Venkataramanan A, others. [PDF], 2023

  6. Block-wise lora: Revisiting fine-grained lora for effective personalization and stylization in text-to-image generation. arXiv
    Li L, Zeng H, Yang C, Jia H, Xu D. [PDF], 2024

  7. OMG: occlusion-friendly personalized multi-concept generation in diffusion models. arXiv
    Kong Z, Zhang Y, Yang T, Wang T, Zhang K, Wu B, Chen G, Liu W, Luo W. [PDF][Code], 2024

  8. Space narrative: Generating images and 3d scenes of chinese garden from text using deep learning. preprint
    Shi J, Hua H. [PDF], 2023

  9. Generating coherent comic with rich story using chatgpt and stable diffusion. arXiv
    Jin Z, Song Z. [PDF], 2023

  10. Customizing 360-degree panoramas through text-to-image diffusion models. WACV
    Wang H, Xiang X, Fan Y, Xue J. [PDF][Code], 2024

  11. Smooth diffusion: Crafting smooth latent spaces in diffusion models. arXiv
    Guo J, Xu X, Pu Y, Ni Z, Wang C, Vasu M, Song S, Huang G, Shi H. [PDF][Code], 2023

  12. Resadapter: Domain consistent resolution adapter for diffusion models. arXiv
    Cheng J, Xie P, Xia X, Li J, Wu J, Ren Y, Li H, Xiao X, Zheng M, Fu L. [PDF][Code], 2024

  13. Continual diffusion with stamina: Stack-and-mask incremental adapters. CVPR
    Smith J S, Hsu Y C, Kira Z, Shen Y, Jin H. [PDF], 2024

  14. Dreamsync: Aligning text-to-image generation with image understanding feedback. CVPR
    Sun J, Fu D, Hu Y, Wang S, Rassin R, Juan D C, Alon D, Herrmann C, Steenkiste v S, Krishna R, others. [PDF], 2023

  15. Styleadapter: A single-pass lora-free model for stylized image generation. arXiv
    Wang Z, Wang X, Xie L, Qi Z, Shan Y, Wang W, Luo P. [PDF], 2023

  16. Mix-of-show: Decentralized low-rank adaptation for multi-concept customization of diffusion models. NeurIPS
    Gu Y, Wang X, Wu J Z, Shi Y, Chen Y, Fan Z, Xiao W, Zhao R, Chang S, Wu W, Ge Y, Shan Y, Shou M Z. [PDF][Code], 2023

  17. LCM-lora: A universal stable-diffusion acceleration module. arXiv
    Luo S, Tan Y, Patil S, Gu D, Platen v P, Passos A, Huang L, Li J, Zhao H. [PDF][Code], 2023

  18. Lora-enhanced distillation on guided diffusion models. arXiv
    Golnari P A. [PDF], 2023

  19. Customize-a-video: One-shot motion customization of text-to-video diffusion models. arXiv
    Ren Y, Zhou Y, Yang J, Shi J, Liu D, Liu F, Kwon M, Shrivastava A. [PDF], 2024

  20. Dragvideo: Interactive drag-style video editing. arXiv
    Deng Y, Wang R, Zhang Y, Tai Y, Tang C. [PDF][Code], 2023

  21. Rerender A video: Zero-shot text-guided video-to-video translation. SIGGRAPH
    Yang S, Zhou Y, Liu Z, Loy C C. [PDF][Code], 2023

  22. Infusion: Inject and attention fusion for multi concept zero-shot text-based video editing. ICCV
    Khandelwal A. [PDF][Code], 2023

  23. Stable video diffusion: Scaling latent video diffusion models to large datasets. arXiv
    Blattmann A, Dockhorn T, Kulal S, Mendelevitch D, Kilian M, Lorenz D, Levi Y, English Z, Voleti V, Letts A, others. [PDF], 2023

  24. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. arXiv
    Guo Y, Yang C, Rao A, Wang Y, Qiao Y, Lin D, Dai B. [PDF][Code], 2023

  25. Dreamcontrol: Control-based text-to-3d generation with 3d self-prior. arXiv
    Huang T, Zeng Y, Zhang Z, Xu W, Xu H, Xu S, Lau R W H, Zuo W. [PDF][Code], 2023

  26. X-dreamer: Creating high-quality 3d content by bridging the domain gap between text-to-2d and text-to-3d generation. arXiv
    Ma Y, Fan Y, Ji J, Wang H, Sun X, Jiang G, Shu A, Ji R. [PDF][Code], 2023

  27. Boosting3d: High-fidelity image-to-3d by boosting 2d diffusion prior to 3d prior with progressive learning. arXiv
    Yu K, Liu J, Feng M, Cui M, Xie X. [PDF], 2023

  28. As-plausible-as-possible: Plausibility-aware mesh deformation using 2d diffusion priors. CVPR
    Yoo S, Kim K, Kim V G, Sung M. [PDF][Code], 2024

  29. Dragtex: Generative point-based texture editing on 3d mesh. arXiv
    Zhang Y, Xu Q, Zhang L. [PDF], 2024

Image Segmentation Task

  1. Samlp: A customized segment anything model for license plate detection. arXiv
    Ding H, Gao J, Yuan Y, Wang Q. [PDF][Code], 2024

  2. Sam-based instance segmentation models for the automation of structural damage detection. arXiv
    Ye Z, Lovell L, Faramarzi A, Ninic J. [PDF], 2024

  3. Segment any cell: A sam-based auto-prompting fine-tuning framework for nuclei segmentation. arXiv
    Na S, Guo Y, Jiang F, Ma H, Huang J. [PDF], 2024

  4. SAM-OCTA: prompting segment-anything for OCTA image segmentation. arXiv
    Chen X, Wang C, Ning H, Li S. [PDF][Code], 2023

  5. Cheap lunch for medical image segmentation by fine-tuning SAM on few exemplars. arXiv
    Feng W, Zhu L, Yu L. [PDF], 2023

  6. Customized segment anything model for medical image segmentation. arXiv
    Zhang K, Liu D. [PDF], 2023

  7. SAM meets robotic surgery: An empirical study on generalization, robustness and adaptation. MICCAI
    Wang A, Islam M, Xu M, Zhang Y, Ren H. [PDF], 2023

  8. Tracking meets lora: Faster training, larger model, stronger performance. arXiv
    Lin L, Fan H, Zhang Z, Wang Y, Xu Y, Ling H. [PDF], 2024

  9. Enhancing general face forgery detection via vision transformer with low-rank adaptation. MIPR
    Kong C, Li H, Wang S. [PDF], 2023

Multimodal Tasks

Audio-Text

  1. SALM: speech-augmented language model with in-context learning for speech recognition and translation. arXiv
    Chen Z, Huang H, Andrusenko A, Hrinchuk O, Puvvada KC, Li J, Ghosh S, Balam J, Ginsburg B. [PDF], 2023

Image-Text

  1. InternLM-XComposer2: Mastering Free-Form Text-Image Composition and Comprehension in Vision-Language Large Model. arXiv
    Chen Z, Huang H, Andrusenko A, Hrinchuk O, Puvvada KC, Li J, Ghosh S, Balam J, Ginsburg B. [PDF][Code], 2024

  2. mPlug-OWL: Modularization Empowers Large Language Models with Multimodality. arXiv
    Ye Q, Xu H, Xu G, Ye J, Yan M, Zhou Y, Wang J, Hu A, Shi P, Shi Y, Li C, Xu Y, Chen H, Tian J, Qi Q, Zhang J, Huang F. [PDF][Code], 2023

  3. Collavo: Crayon Large Language and Vision Model. arXiv
    Lee B, Park B, Kim CW, Ro YM. [PDF][Code], 2024

Video-Text

  1. Where visual speech meets language: VSP-LLM framework for efficient and context-aware visual speech processing. arXiv
    J. H. Yeo, S. Han, M. Kim, Y. M. Ro. [PDF][Code], 2024

  2. Molca: Molecular graph-language modeling with cross-modal projector and uni-modal adapter. EMNLP
    Z. Liu, S. Li, Y. Luo, H. Fei, Y. Cao, K. Kawaguchi, X. Wang, T. Chua. [PDF][Code], 2023

  3. TPLLM: A traffic prediction framework based on pretrained large language models. arXiv
    Y. Ren, Y. Chen, S. Liu, B. Wang, H. Yu, Z. Cui. [PDF], 2024

Contribution

Contributions to this repository are welcome!

If you find any error or have relevant resources, feel free to open an issue or a pull request.

Paper format:

1. **[paper title].** `[]`

    *[authors].* [[PDF]([pdf link])] [[Code]([code link])], published time, ![](https://img.shields.io/badge/[architecture]-blue) ![](https://img.shields.io/badge/[size]-red)

Citations

Please cite the following paper if you find the resource helpful for your research.

@article{mao2024survey,
  title={A Survey on LoRA of Large Language Models},
  author={Mao, Yuren and Ge, Yuhang and Fan, Yijiang and Xu, Wenyi and Mi, Yu and Hu, Zhonghao and Gao, Yunjun},
  journal={arXiv preprint arXiv:2407.11046},
  year={2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published