Skip to content

Commit

Permalink
增加使用Spark读取非Kerberos环境的Kafka数据写入Kudu
Browse files Browse the repository at this point in the history
  • Loading branch information
peach committed Aug 6, 2018
1 parent 78fc867 commit c369088
Show file tree
Hide file tree
Showing 2 changed files with 158 additions and 0 deletions.
4 changes: 4 additions & 0 deletions spark2demo/src/main/resources/0294.properties
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
kafka.brokers=cdh02.fayson.com:9092,cdh03.fayson.com:9092,cdh04.fayson.com:9092
kafka.topics=kafka_kudu_topic
group.id=testgroup
kudumaster.list=cdh01.fayson.com,cdh02.fayson.com,cdh03.fayson.com
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
package com.cloudera.streaming.nokerberos

import java.io.{File, FileInputStream}
import java.util.Properties

import org.apache.commons.lang.StringUtils
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.kudu.client.CreateTableOptions
import org.apache.kudu.spark.kudu.KuduContext
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils, LocationStrategies}

import scala.util.parsing.json.JSON
import scala.collection.JavaConverters._

/**
* package: com.cloudera.streaming.nokerberos
* 使用spark2-submit的方式提交作业
spark2-submit --class com.cloudera.streaming.nokerberos.Kafka2Spark2Kudu \
--master yarn \
--deploy-mode client \
--executor-memory 2g \
--executor-cores 2 \
--driver-memory 2g \
--num-executors 2 \
spark2-demo-1.0-SNAPSHOT.jar
* creat_user: Fayson
* email: [email protected]
* creat_date: 2018/8/6
* creat_time: 下午5:05
* 公众号:Hadoop实操
*/
object Kafka2Spark2Kudu {

Logger.getLogger("com").setLevel(Level.ERROR) //设置日志级别

var confPath: String = System.getProperty("user.dir") + File.separator + "conf/0294.properties"

/**
* 建表Schema定义
*/
val userInfoSchema = StructType(
// col name type nullable?
StructField("id", StringType , false) ::
StructField("name" , StringType, true ) ::
StructField("sex" , StringType, true ) ::
StructField("city" , StringType, true ) ::
StructField("occupation" , StringType, true ) ::
StructField("tel" , StringType, true ) ::
StructField("fixPhoneNum" , StringType, true ) ::
StructField("bankName" , StringType, true ) ::
StructField("address" , StringType, true ) ::
StructField("marriage" , StringType, true ) ::
StructField("childNum", StringType , true ) :: Nil
)

/**
* 定义一个UserInfo对象
*/
case class UserInfo (
id: String,
name: String,
sex: String,
city: String,
occupation: String,
tel: String,
fixPhoneNum: String,
bankName: String,
address: String,
marriage: String,
childNum: String
)

def main(args: Array[String]): Unit = {
//加载配置文件
val properties = new Properties()
val file = new File(confPath)
if(!file.exists()) {
System.out.println(Kafka2Spark2Kudu.getClass.getClassLoader.getResource("0294.properties"))
val in = Kafka2Spark2Kudu.getClass.getClassLoader.getResourceAsStream("0294.properties")
properties.load(in);
} else {
properties.load(new FileInputStream(confPath))
}

val brokers = properties.getProperty("kafka.brokers")
val topics = properties.getProperty("kafka.topics")
val kuduMaster = properties.getProperty("kudumaster.list")
println("kafka.brokers:" + brokers)
println("kafka.topics:" + topics)
println("kudu.master:" + kuduMaster)

if(StringUtils.isEmpty(brokers)|| StringUtils.isEmpty(topics) || StringUtils.isEmpty(kuduMaster)) {
println("未配置Kafka和KuduMaster信息")
System.exit(0)
}
val topicsSet = topics.split(",").toSet

val spark = SparkSession.builder().appName("Kafka2Spark2Kudu-nokerberos").config(new SparkConf()).getOrCreate()
val ssc = new StreamingContext(spark.sparkContext, Seconds(5)) //设置Spark时间窗口,每5s处理一次
val kafkaParams = Map[String, Object]("bootstrap.servers" -> brokers
, "auto.offset.reset" -> "latest"
, "key.deserializer" -> classOf[StringDeserializer]
, "value.deserializer" -> classOf[StringDeserializer]
, "group.id" -> properties.getProperty("group.id")
)

val dStream = KafkaUtils.createDirectStream[String, String](ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](topicsSet, kafkaParams))

//引入隐式
import spark.implicits._
val kuduContext = new KuduContext(kuduMaster, spark.sparkContext)

//判断表是否存在
if(!kuduContext.tableExists("user_info")) {
println("create Kudu Table :{user_info}")
val createTableOptions = new CreateTableOptions()
createTableOptions.addHashPartitions(List("id").asJava, 8).setNumReplicas(3)
kuduContext.createTable("user_info", userInfoSchema, Seq("id"), createTableOptions)
}

dStream.foreachRDD(rdd => {
//将rdd数据重新封装为Rdd[UserInfo]
val newrdd = rdd.map(line => {
val jsonObj = JSON.parseFull(line.value())
val map:Map[String,Any] = jsonObj.get.asInstanceOf[Map[String, Any]]
new UserInfo(
map.get("id").get.asInstanceOf[String],
map.get("name").get.asInstanceOf[String],
map.get("sex").get.asInstanceOf[String],
map.get("city").get.asInstanceOf[String],
map.get("occupation").get.asInstanceOf[String],
map.get("mobile_phone_num").get.asInstanceOf[String],
map.get("fix_phone_num").get.asInstanceOf[String],
map.get("bank_name").get.asInstanceOf[String],
map.get("address").get.asInstanceOf[String],
map.get("marriage").get.asInstanceOf[String],
map.get("child_num").get.asInstanceOf[String]
)
})
//将RDD转换为DataFrame
val userinfoDF = spark.sqlContext.createDataFrame(newrdd)
kuduContext.upsertRows(userinfoDF, "user_info")
})
ssc.start()
ssc.awaitTermination()
}
}

0 comments on commit c369088

Please sign in to comment.