forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request TheAlgorithms#108 from frmatias/master
Perceptron - one neuron
- Loading branch information
Showing
1 changed file
with
123 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
''' | ||
Perceptron | ||
w = w + N * (d(k) - y) * x(k) | ||
Using perceptron network for oil analysis, | ||
with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2 | ||
p1 = -1 | ||
p2 = 1 | ||
''' | ||
|
||
import random | ||
|
||
|
||
class Perceptron: | ||
def __init__(self, sample, exit, learn_rate=0.01, epoch_number=1000, bias=-1): | ||
self.sample = sample | ||
self.exit = exit | ||
self.learn_rate = learn_rate | ||
self.epoch_number = epoch_number | ||
self.bias = bias | ||
self.number_sample = len(sample) | ||
self.col_sample = len(sample[0]) | ||
self.weight = [] | ||
|
||
def trannig(self): | ||
for sample in self.sample: | ||
sample.insert(0, self.bias) | ||
|
||
for i in range(self.col_sample): | ||
self.weight.append(random.random()) | ||
|
||
self.weight.insert(0, self.bias) | ||
|
||
epoch_count = 0 | ||
|
||
while True: | ||
erro = False | ||
for i in range(self.number_sample): | ||
u = 0 | ||
for j in range(self.col_sample + 1): | ||
u = u + self.weight[j] * self.sample[i][j] | ||
y = self.sign(u) | ||
if y != self.exit[i]: | ||
|
||
for j in range(self.col_sample + 1): | ||
|
||
self.weight[j] = self.weight[j] + self.learn_rate * (self.exit[i] - y) * self.sample[i][j] | ||
erro = True | ||
#print('Epoch: \n',epoch_count) | ||
epoch_count = epoch_count + 1 | ||
# if you want controle the epoch or just by erro | ||
if erro == False: | ||
print('\nEpoch:\n',epoch_count) | ||
print('------------------------\n') | ||
#if epoch_count > self.epoch_number or not erro: | ||
break | ||
|
||
def sort(self, sample): | ||
sample.insert(0, self.bias) | ||
u = 0 | ||
for i in range(self.col_sample + 1): | ||
u = u + self.weight[i] * sample[i] | ||
|
||
y = self.sign(u) | ||
|
||
if y == -1: | ||
print('Sample: ', sample) | ||
print('classification: P1') | ||
else: | ||
print('Sample: ', sample) | ||
print('classification: P2') | ||
|
||
def sign(self, u): | ||
return 1 if u >= 0 else -1 | ||
|
||
|
||
samples = [ | ||
[-0.6508, 0.1097, 4.0009], | ||
[-1.4492, 0.8896, 4.4005], | ||
[2.0850, 0.6876, 12.0710], | ||
[0.2626, 1.1476, 7.7985], | ||
[0.6418, 1.0234, 7.0427], | ||
[0.2569, 0.6730, 8.3265], | ||
[1.1155, 0.6043, 7.4446], | ||
[0.0914, 0.3399, 7.0677], | ||
[0.0121, 0.5256, 4.6316], | ||
[-0.0429, 0.4660, 5.4323], | ||
[0.4340, 0.6870, 8.2287], | ||
[0.2735, 1.0287, 7.1934], | ||
[0.4839, 0.4851, 7.4850], | ||
[0.4089, -0.1267, 5.5019], | ||
[1.4391, 0.1614, 8.5843], | ||
[-0.9115, -0.1973, 2.1962], | ||
[0.3654, 1.0475, 7.4858], | ||
[0.2144, 0.7515, 7.1699], | ||
[0.2013, 1.0014, 6.5489], | ||
[0.6483, 0.2183, 5.8991], | ||
[-0.1147, 0.2242, 7.2435], | ||
[-0.7970, 0.8795, 3.8762], | ||
[-1.0625, 0.6366, 2.4707], | ||
[0.5307, 0.1285, 5.6883], | ||
[-1.2200, 0.7777, 1.7252], | ||
[0.3957, 0.1076, 5.6623], | ||
[-0.1013, 0.5989, 7.1812], | ||
[2.4482, 0.9455, 11.2095], | ||
[2.0149, 0.6192, 10.9263], | ||
[0.2012, 0.2611, 5.4631] | ||
|
||
] | ||
|
||
exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1] | ||
|
||
network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1) | ||
|
||
network.trannig() | ||
|
||
while True: | ||
sample = [] | ||
for i in range(3): | ||
sample.insert(i, float(input('value: '))) | ||
network.sort(sample) |