forked from MorvanZhou/Tensorflow-Tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
158be77
commit 1e57fa6
Showing
2 changed files
with
70 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
""" | ||
Know more, visit my Python tutorial page: https://morvanzhou.github.io/tutorials/ | ||
My Youtube Channel: https://www.youtube.com/user/MorvanZhou | ||
Dependencies: | ||
tensorflow: 1.1.0 | ||
matplotlib | ||
numpy | ||
""" | ||
import tensorflow as tf | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from mpl_toolkits.mplot3d import Axes3D | ||
|
||
LR = .1 | ||
REAL_PARAMS = [1.2, 2.5] | ||
INIT_PARAMS = [[5, 4], | ||
[0, 0], | ||
[2, 4.5]][2] | ||
|
||
x = np.linspace(-1, 1, 200, dtype=np.float32) | ||
|
||
# test 1 | ||
# y_fun = lambda a, b: a * x + b | ||
# tf_y_fun = lambda a, b: a * x + b | ||
|
||
# test 2 | ||
# y_fun = lambda a, b: a * x**3 + b * x**2 | ||
# tf_y_fun = lambda a, b: a * x**3 + b * x**2 | ||
|
||
# test 3 | ||
y_fun = lambda a, b: np.sin(b*np.cos(a*x)) | ||
tf_y_fun = lambda a, b: tf.sin(b*tf.cos(a*x)) | ||
|
||
noise = np.random.randn(200)/10 | ||
y = y_fun(*REAL_PARAMS) + noise # target | ||
|
||
# tensorflow graph | ||
a, b = [tf.Variable(initial_value=p, dtype=tf.float32) for p in INIT_PARAMS] | ||
pred = tf_y_fun(a, b) | ||
mse = tf.reduce_mean(tf.square(y-pred)) | ||
train_op = tf.train.GradientDescentOptimizer(LR).minimize(mse) | ||
|
||
a_list, b_list, cost_list = [], [], [] | ||
with tf.Session() as sess: | ||
sess.run(tf.global_variables_initializer()) | ||
for t in range(400): | ||
a_, b_, mse_ = sess.run([a, b, mse]) | ||
a_list.append(a_); b_list.append(b_); cost_list.append(mse_) # record parameter changes | ||
result, _ = sess.run([pred, train_op]) # training | ||
|
||
|
||
print('a=', a_, 'b=', b_) | ||
plt.figure(1) | ||
plt.scatter(x, y, c='b') # plot data | ||
plt.plot(x, result, 'r-') # plot line fitting | ||
# 3D cost figure | ||
fig = plt.figure(2); ax = Axes3D(fig) | ||
a3D, b3D = np.meshgrid(np.linspace(-2, 7, 30), np.linspace(-2, 7, 30)) # parameter space | ||
cost3D = np.array([np.mean(np.square(y_fun(a_, b_) - y)) for a_, b_ in zip(a3D.flatten(), b3D.flatten())]).reshape(a3D.shape) | ||
ax.plot_surface(a3D, b3D, cost3D, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow'), alpha=0.5) | ||
ax.scatter(a_list[0], b_list[0], zs=cost_list[0], s=300, c='r') # initial parameter place | ||
ax.set_xlabel('a'); ax.set_ylabel('b') | ||
ax.plot(a_list, b_list, zs=cost_list, zdir='z', c='r', lw=3) # plot 3D gradient descent | ||
plt.show() |