- 👋 Hi, I’m @a147982345
- 👀 I’m interested in ...
- 🌱 I’m currently learning ...
- 💞️ I’m looking to collaborate on ...
- 📫 How to reach me ...
暑 期 充 电 季
百度飞桨领航团全新推出“AI达人创造营” 十位飞桨开发者技术专家(PPDE)手把手教大家完成项目从idea思考到部署落地的全流程实战 最终让每位参与者都有一个可以给自己简历加分的项目 7月26日-8月16日,每晚 19:00-21:00 直播讲解、十位飞桨开发者技术专家(PPDE)手把手教助你成为AI达人 报名后,请加入课程 QQ 群861942585,QQ群用于直播提醒、实时答疑、交流互动等
PS:
本项目属于本次课程的大作业的一部分,希望大家可以学会使用paddleclas实现图像分类。
1、选择一个心仪的数据集
2、运行项目,能够跑通项目即可达到结业要求
3、记得生成新版本,公开项目哦~
加分项:
4、更换网络、进行数据预处理和调参
正如标题,采用paddleclas套件实现分类30分钟玩转PaddleClas(尝鲜版)
查看套件,可以知道
实现分类,仅仅需要我们将数据集提取为如下这种格式的txt文件即可(当然我们并不需要更大的训练集)
PS:
如有需要参考项目可看:
基于PaddleClas2.2的从零到落地安卓部署的奥特曼分类实战
iFLYTEK基于PaddleClas2.2的广告分类baseline非官方
本次数据集有五个可供大家选择。分别是:
- 猫12分类
- 垃圾40分类
- 场景5分类
- 食物5分类
- 蝴蝶20分类
数据集:都是不同类别的文件夹下放置了对应文件夹名字的类别图片
# 先导入库
from sklearn.utils import shuffle
import os
import pandas as pd
import numpy as np
from PIL import Image
import paddle
import paddle.nn as nn
import random
# 忽略(垃圾)警告信息
# 在python中运行代码经常会遇到的情况是——代码可以正常运行但是会提示警告,有时特别讨厌。
# 那么如何来控制警告输出呢?其实很简单,python通过调用warnings模块中定义的warn()函数来发出警告。我们可以通过警告过滤器进行控制是否发出警告消息。
import warnings
warnings.filterwarnings("ignore")
# 项目挂载的数据集先解压出来,待解压完毕,刷新后可发现左侧文件夹根目录出现五个zip
!unzip -oq /home/aistudio/data/data103736/五种图像分类数据集.zip
# 本项目以食物分类为例进行介绍,因为分类大多数情况下是不存在标签文件的,猫分类已经有了标签,省去了数据处理的操作
# (此处需要你根据自己的选择进行解压对应的文件)
# 解压完毕左侧出现文件夹,即为需要分类的文件
!unzip -oq /home/aistudio/食物5分类.zip
# 查看结构,正为一个类别下有一系列对应的图片
!tree foods/
5 directories, 5000 files
五类食物图片
- beef_carpaccio
- baby_back_ribs
- beef_tartare
- apple_pie
- baklava
具体结构如下:
foods/
├── apple_pie
│ ├── 1005649.jpg
│ ├── 1011328.jpg
│ ├── 101251.jpg
import os
# -*- coding: utf-8 -*-
# 根据官方paddleclas的提示,我们需要把图像变为两个txt文件
# train_list.txt(训练集)
# val_list.txt(验证集)
# 先把路径搞定 比如:foods/beef_carpaccio/855780.jpg ,读取到并写入txt
# 根据左侧生成的文件夹名字来写根目录
dirpath = "foods"
# 先得到总的txt后续再进行划分,因为要划分出验证集,所以要先打乱,因为原本是有序的
def get_all_txt():
all_list = []
i = 0 # 标记总文件数量
j = 0 # 标记文件类别
for root,dirs,files in os.walk(dirpath): # 分别代表根目录、文件夹、文件
for file in files:
i = i + 1
# 文件中每行格式: 图像相对路径 图像的label_id(数字类别)(注意:中间有空格)。
imgpath = os.path.join(root,file)
all_list.append(imgpath+" "+str(j)+"\n")
j = j + 1
allstr = ''.join(all_list)
f = open('all_list.txt','w',encoding='utf-8')
f.write(allstr)
return all_list , i
all_list,all_lenth = get_all_txt()
print(all_lenth)
5000
# 把数据打乱
all_list = shuffle(all_list)
allstr = ''.join(all_list)
f = open('all_list.txt','w',encoding='utf-8')
f.write(allstr)
print("打乱成功,并重新写入文本")
打乱成功,并重新写入文本
# 按照比例划分数据集 食品的数据有5000张图片,不算大数据,一般9:1即可
train_size = int(all_lenth * 0.9)
train_list = all_list[:train_size]
val_list = all_list[train_size:]
print(len(train_list))
print(len(val_list))
4500
500
# 运行cell,生成训练集txt
train_txt = ''.join(train_list)
f_train = open('train_list.txt','w',encoding='utf-8')
f_train.write(train_txt)
f_train.close()
print("train_list.txt 生成成功!")
# 运行cell,生成验证集txt
val_txt = ''.join(val_list)
f_val = open('val_list.txt','w',encoding='utf-8')
f_val.write(val_txt)
f_val.close()
print("val_list.txt 生成成功!")
train_list.txt 生成成功!
val_list.txt 生成成功!
数据集核实完搞定成功的前提下,可以准备更改原文档的参数进行实现自己的图片分类了!
这里采用paddleclas的2.2版本,好用!
# 先把paddleclas安装上再说
# 安装paddleclas以及相关三方包(好像studio自带的已经够用了,无需安装了)
!git clone https://gitee.com/paddlepaddle/PaddleClas.git -b release/2.2
# 我这里安装相关包时,花了30几分钟还有错误提示,不管他即可
!pip install --upgrade -r PaddleClas/requirements.txt -i https://mirror.baidu.com/pypi/simple
Cloning into 'PaddleClas'...
remote: Enumerating objects: 538, done.�[K
remote: Counting objects: 100% (538/538), done.�[K
remote: Compressing objects: 100% (323/323), done.�[K
remote: Total 15290 (delta 347), reused 349 (delta 210), pack-reused 14752�[K
Receiving objects: 100% (15290/15290), 113.56 MiB | 5.03 MiB/s, done.
Resolving deltas: 100% (10239/10239), done.
Checking connectivity... done.
Looking in indexes: https://mirror.baidu.com/pypi/simple
Collecting prettytable (from -r PaddleClas/requirements.txt (line 1))
Downloading https://mirror.baidu.com/pypi/packages/26/1b/42b59a4038bc0442e3a0085bc0de385658131eef8a88946333f870559b09/prettytable-2.1.0-py3-none-any.whl
Collecting ujson (from -r PaddleClas/requirements.txt (line 2))
�[?25l Downloading https://mirror.baidu.com/pypi/packages/17/4e/50e8e4cf5f00b537095711c2c86ac4d7191aed2b4fffd5a19f06898f6929/ujson-4.0.2-cp37-cp37m-manylinux1_x86_64.whl (179kB)
�[K |████████████████████████████████| 184kB 28.0MB/s eta 0:00:01
�[?25hCollecting opencv-python==4.4.0.46 (from -r PaddleClas/requirements.txt (line 3))
�[?25l Downloading https://mirror.baidu.com/pypi/packages/30/46/821920986c7ce5bae5518c1d490e520a9ab4cef51e3e54e35094dadf0d68/opencv-python-4.4.0.46.tar.gz (88.9MB)
�[K |████████████████████████████████| 88.9MB 13.7MB/s eta 0:00:01
�[?25h Installing build dependencies ... �[?25ldone
�[?25h Getting requirements to build wheel ... �[?25ldone
�[?25h Preparing wheel metadata ... �[?25ldone
�[?25hCollecting pillow (from -r PaddleClas/requirements.txt (line 4))
�[?25l Downloading https://mirror.baidu.com/pypi/packages/8e/7a/b047f6f80fdb02c0cca1d3761d71e9800bcf6d4874b71c9e6548ec59e156/Pillow-8.3.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0MB)
�[K |████████████████████████████████| 3.0MB 15.8MB/s eta 0:00:01
�[?25hCollecting tqdm (from -r PaddleClas/requirements.txt (line 5))
�[?25l Downloading https://mirror.baidu.com/pypi/packages/96/8f/61d0ab27df8252139eadfd54ba92c6520fec87b205b23ccf77fc3b8225b8/tqdm-4.62.1-py2.py3-none-any.whl (76kB)
�[K |████████████████████████████████| 81kB 27.2MB/s eta 0:00:01
�[?25hCollecting PyYAML (from -r PaddleClas/requirements.txt (line 6))
�[?25l Downloading https://mirror.baidu.com/pypi/packages/7a/a5/393c087efdc78091afa2af9f1378762f9821c9c1d7a22c5753fb5ac5f97a/PyYAML-5.4.1-cp37-cp37m-manylinux1_x86_64.whl (636kB)
�[K |████████████████████████████████| 645kB 12.5MB/s eta 0:00:01
�[?25hRequirement already up-to-date: visualdl>=2.0.0b in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r PaddleClas/requirements.txt (line 7)) (2.2.0)
Collecting scipy (from -r PaddleClas/requirements.txt (line 8))
�[?25l Downloading https://mirror.baidu.com/pypi/packages/b5/6b/8bc0b61ebf824f8c3979a31368bbe38dd247590049a994ab0ed077cb56dc/scipy-1.7.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (28.5MB)
�[K |████████████████████████████████| 28.5MB 8.7MB/s eta 0:00:012
�[?25hCollecting scikit-learn==0.23.2 (from -r PaddleClas/requirements.txt (line 9))
�[?25l Downloading https://mirror.baidu.com/pypi/packages/f4/cb/64623369f348e9bfb29ff898a57ac7c91ed4921f228e9726546614d63ccb/scikit_learn-0.23.2-cp37-cp37m-manylinux1_x86_64.whl (6.8MB)
�[K |████████████████████████████████| 6.8MB 9.9MB/s eta 0:00:01
�[?25hRequirement already up-to-date: gast==0.3.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r PaddleClas/requirements.txt (line 10)) (0.3.3)
Requirement already satisfied, skipping upgrade: wcwidth in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from prettytable->-r PaddleClas/requirements.txt (line 1)) (0.1.7)
Requirement already satisfied, skipping upgrade: importlib-metadata; python_version < "3.8" in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from prettytable->-r PaddleClas/requirements.txt (line 1)) (0.23)
Requirement already satisfied, skipping upgrade: numpy>=1.14.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from opencv-python==4.4.0.46->-r PaddleClas/requirements.txt (line 3)) (1.20.3)
Requirement already satisfied, skipping upgrade: six>=1.14.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.15.0)
Requirement already satisfied, skipping upgrade: matplotlib in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2.2.3)
Requirement already satisfied, skipping upgrade: Flask-Babel>=1.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.0.0)
Requirement already satisfied, skipping upgrade: requests in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2.22.0)
Requirement already satisfied, skipping upgrade: pre-commit in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.21.0)
Requirement already satisfied, skipping upgrade: bce-python-sdk in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (0.8.53)
Requirement already satisfied, skipping upgrade: flake8>=3.7.9 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (3.8.2)
Requirement already satisfied, skipping upgrade: protobuf>=3.11.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (3.14.0)
Requirement already satisfied, skipping upgrade: flask>=1.1.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.1.1)
Requirement already satisfied, skipping upgrade: shellcheck-py in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (0.7.1.1)
Requirement already satisfied, skipping upgrade: pandas in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.1.5)
Requirement already satisfied, skipping upgrade: threadpoolctl>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn==0.23.2->-r PaddleClas/requirements.txt (line 9)) (2.1.0)
Requirement already satisfied, skipping upgrade: joblib>=0.11 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn==0.23.2->-r PaddleClas/requirements.txt (line 9)) (0.14.1)
Requirement already satisfied, skipping upgrade: zipp>=0.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from importlib-metadata; python_version < "3.8"->prettytable->-r PaddleClas/requirements.txt (line 1)) (0.6.0)
Requirement already satisfied, skipping upgrade: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2.4.2)
Requirement already satisfied, skipping upgrade: kiwisolver>=1.0.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.1.0)
Requirement already satisfied, skipping upgrade: python-dateutil>=2.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2.8.0)
Requirement already satisfied, skipping upgrade: pytz in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2019.3)
Requirement already satisfied, skipping upgrade: cycler>=0.10 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (0.10.0)
Requirement already satisfied, skipping upgrade: Jinja2>=2.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask-Babel>=1.0.0->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2.10.1)
Requirement already satisfied, skipping upgrade: Babel>=2.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask-Babel>=1.0.0->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2.8.0)
Requirement already satisfied, skipping upgrade: idna<2.9,>=2.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2.8)
Requirement already satisfied, skipping upgrade: certifi>=2017.4.17 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2019.9.11)
Requirement already satisfied, skipping upgrade: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.25.6)
Requirement already satisfied, skipping upgrade: chardet<3.1.0,>=3.0.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (3.0.4)
Requirement already satisfied, skipping upgrade: identify>=1.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.4.10)
Requirement already satisfied, skipping upgrade: aspy.yaml in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.3.0)
Requirement already satisfied, skipping upgrade: virtualenv>=15.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (16.7.9)
Requirement already satisfied, skipping upgrade: toml in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (0.10.0)
Requirement already satisfied, skipping upgrade: nodeenv>=0.11.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.3.4)
Requirement already satisfied, skipping upgrade: cfgv>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2.0.1)
Requirement already satisfied, skipping upgrade: pycryptodome>=3.8.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from bce-python-sdk->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (3.9.9)
Requirement already satisfied, skipping upgrade: future>=0.6.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from bce-python-sdk->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (0.18.0)
Requirement already satisfied, skipping upgrade: pycodestyle<2.7.0,>=2.6.0a1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flake8>=3.7.9->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2.6.0)
Requirement already satisfied, skipping upgrade: pyflakes<2.3.0,>=2.2.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flake8>=3.7.9->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (2.2.0)
Requirement already satisfied, skipping upgrade: mccabe<0.7.0,>=0.6.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flake8>=3.7.9->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (0.6.1)
Requirement already satisfied, skipping upgrade: click>=5.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flask>=1.1.1->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (7.0)
Requirement already satisfied, skipping upgrade: Werkzeug>=0.15 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flask>=1.1.1->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (0.16.0)
Requirement already satisfied, skipping upgrade: itsdangerous>=0.24 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flask>=1.1.1->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.1.0)
Requirement already satisfied, skipping upgrade: more-itertools in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from zipp>=0.5->importlib-metadata; python_version < "3.8"->prettytable->-r PaddleClas/requirements.txt (line 1)) (7.2.0)
Requirement already satisfied, skipping upgrade: setuptools in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (56.2.0)
Requirement already satisfied, skipping upgrade: MarkupSafe>=0.23 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Jinja2>=2.5->Flask-Babel>=1.0.0->visualdl>=2.0.0b->-r PaddleClas/requirements.txt (line 7)) (1.1.1)
Building wheels for collected packages: opencv-python
Building wheel for opencv-python (PEP 517) ... �[?25ldone
�[?25h Created wheel for opencv-python: filename=opencv_python-4.4.0.46-cp37-cp37m-linux_x86_64.whl size=12702498 sha256=4833307e2b04ca3ab6de5eb9e13ff6973ff843461e9c776ebe1ca735e50205de
Stored in directory: /home/aistudio/.cache/pip/wheels/84/ad/2c/2750e9e71f879c0807c4bbdfb84ba638eb1f9576dc211fc5bb
Successfully built opencv-python
�[31mERROR: python-language-server 0.33.0 has requirement ujson<=1.35; platform_system != "Windows", but you'll have ujson 4.0.2 which is incompatible.�[0m
�[31mERROR: python-jsonrpc-server 0.3.4 has requirement ujson<=1.35; platform_system != "Windows", but you'll have ujson 4.0.2 which is incompatible.�[0m
�[31mERROR: blackhole 1.0.1 has requirement numpy<=1.19.5, but you'll have numpy 1.20.3 which is incompatible.�[0m
Installing collected packages: prettytable, ujson, opencv-python, pillow, tqdm, PyYAML, scipy, scikit-learn
Found existing installation: prettytable 0.7.2
Uninstalling prettytable-0.7.2:
Successfully uninstalled prettytable-0.7.2
Found existing installation: ujson 1.35
Uninstalling ujson-1.35:
Successfully uninstalled ujson-1.35
Found existing installation: opencv-python 4.1.1.26
Uninstalling opencv-python-4.1.1.26:
Successfully uninstalled opencv-python-4.1.1.26
Found existing installation: Pillow 7.1.2
Uninstalling Pillow-7.1.2:
Successfully uninstalled Pillow-7.1.2
Found existing installation: tqdm 4.36.1
Uninstalling tqdm-4.36.1:
Successfully uninstalled tqdm-4.36.1
Found existing installation: PyYAML 5.1.2
Uninstalling PyYAML-5.1.2:
Successfully uninstalled PyYAML-5.1.2
Found existing installation: scipy 1.6.3
Uninstalling scipy-1.6.3:
Successfully uninstalled scipy-1.6.3
Found existing installation: scikit-learn 0.24.2
Uninstalling scikit-learn-0.24.2:
Successfully uninstalled scikit-learn-0.24.2
Successfully installed PyYAML-5.4.1 opencv-python-4.4.0.46 pillow-8.3.1 prettytable-2.1.0 scikit-learn-0.23.2 scipy-1.7.1 tqdm-4.62.1 ujson-4.0.2
#因为后续paddleclas的命令需要在PaddleClas目录下,所以进入PaddleClas根目录,执行此命令
%cd PaddleClas
!ls
/home/aistudio/PaddleClas
dataset hubconf.py MANIFEST.in README_ch.md requirements.txt
deploy __init__.py paddleclas.py README_en.md setup.py
docs LICENSE ppcls README.md tools
# 将图片移动到paddleclas下面的数据集里面
# 至于为什么现在移动,也是我的一点小技巧,防止之前移动的话,生成的txt的路径是全路径,反而需要去掉路径的一部分
!mv ../foods/ dataset/
# 挪动文件到对应目录
!mv ../all_list.txt dataset/foods
!mv ../train_list.txt dataset/foods
!mv ../val_list.txt dataset/foods
主要是以下几点:分类数、图片总量、训练和验证的路径、图像尺寸、数据预处理、训练和预测的num_workers: 0
路径如下:
PaddleClas/ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml
(主要的参数已经进行注释,一定要过一遍)
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
# 使用GPU训练
device: gpu
# 每几个轮次保存一次
save_interval: 1
eval_during_train: True
# 每几个轮次验证一次
eval_interval: 1
# 训练轮次
epochs: 20
print_batch_step: 1
use_visualdl: True #开启可视化(目前平台不可用)
# used for static mode and model export
# 图像大小
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
# model architecture
Arch:
# 采用的网络
name: ResNet50
# 类别数 多了个0类 0-5 0无用
class_num: 6
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Piecewise
learning_rate: 0.015
decay_epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001]
regularizer:
name: 'L2'
coeff: 0.0005
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
# 根路径
image_root: ./dataset/
# 前面自己生产得到的训练集文本路径
cls_label_path: ./dataset/foods/train_list.txt
# 数据预处理
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 0
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
# 根路径
image_root: ./dataset/
# 前面自己生产得到的验证集文本路径
cls_label_path: ./dataset/foods/val_list.txt
# 数据预处理
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 0
use_shared_memory: True
Infer:
infer_imgs: ./dataset/foods/beef_carpaccio/855780.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
# 输出的可能性最高的前topk个
topk: 5
# 标签文件 需要自己新建文件
class_id_map_file: ./dataset/label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
这个是在预测时生成对照的依据,在上个文件有提到这个
# 标签文件 需要自己新建文件
class_id_map_file: dataset/label_list.txt
按照对应的进行编写:
如食品分类(要对照之前的txt的类别确认无误)
1 beef_carpaccio
2 baby_back_ribs
3 beef_tartare
4 apple_pie
5 baklava
# 提示,运行过程中可能存在坏图的情况,但是不用担心,训练过程不受影响。
# 仅供参考,我只跑了五轮,准确率很低
!python3 tools/train.py \
-c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml
[2021/08/15 11:09:50] root INFO: Already save model in ./output/ResNet50/latest
# 更换为你训练的网络,需要预测的文件,上面训练所得到的的最优模型文件
# 我这里是不严谨的,直接使用训练集的图片进行验证,大家可以去百度搜一些相关的图片传上来,进行预测
!python3 tools/infer.py \
-c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml \
-o Infer.infer_imgs=dataset/foods/baby_back_ribs/319516.jpg \
-o Global.pretrained_model=output/ResNet50/best_model
/home/aistudio/PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py:15: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
from collections import Callable
[2021/08/15 11:09:53] root INFO:
===========================================================
== PaddleClas is powered by PaddlePaddle ! ==
===========================================================
== ==
== For more info please go to the following website. ==
== ==
== https://github.com/PaddlePaddle/PaddleClas ==
===========================================================
[2021/08/15 11:09:53] root INFO: Arch :
[2021/08/15 11:09:53] root INFO: class_num : 6
[2021/08/15 11:09:53] root INFO: name : ResNet50
[2021/08/15 11:09:53] root INFO: DataLoader :
[2021/08/15 11:09:53] root INFO: Eval :
[2021/08/15 11:09:53] root INFO: dataset :
[2021/08/15 11:09:53] root INFO: cls_label_path : ./dataset/foods/val_list.txt
[2021/08/15 11:09:53] root INFO: image_root : ./dataset/
[2021/08/15 11:09:53] root INFO: name : ImageNetDataset
[2021/08/15 11:09:53] root INFO: transform_ops :
[2021/08/15 11:09:53] root INFO: DecodeImage :
[2021/08/15 11:09:53] root INFO: channel_first : False
[2021/08/15 11:09:53] root INFO: to_rgb : True
[2021/08/15 11:09:53] root INFO: ResizeImage :
[2021/08/15 11:09:53] root INFO: resize_short : 256
[2021/08/15 11:09:53] root INFO: CropImage :
[2021/08/15 11:09:53] root INFO: size : 224
[2021/08/15 11:09:53] root INFO: NormalizeImage :
[2021/08/15 11:09:53] root INFO: mean : [0.485, 0.456, 0.406]
[2021/08/15 11:09:53] root INFO: order :
[2021/08/15 11:09:53] root INFO: scale : 1.0/255.0
[2021/08/15 11:09:53] root INFO: std : [0.229, 0.224, 0.225]
[2021/08/15 11:09:53] root INFO: loader :
[2021/08/15 11:09:53] root INFO: num_workers : 0
[2021/08/15 11:09:53] root INFO: use_shared_memory : True
[2021/08/15 11:09:53] root INFO: sampler :
[2021/08/15 11:09:53] root INFO: batch_size : 128
[2021/08/15 11:09:53] root INFO: drop_last : False
[2021/08/15 11:09:53] root INFO: name : DistributedBatchSampler
[2021/08/15 11:09:53] root INFO: shuffle : True
[2021/08/15 11:09:53] root INFO: Train :
[2021/08/15 11:09:53] root INFO: dataset :
[2021/08/15 11:09:53] root INFO: cls_label_path : ./dataset/foods/train_list.txt
[2021/08/15 11:09:53] root INFO: image_root : ./dataset/
[2021/08/15 11:09:53] root INFO: name : ImageNetDataset
[2021/08/15 11:09:53] root INFO: transform_ops :
[2021/08/15 11:09:53] root INFO: DecodeImage :
[2021/08/15 11:09:53] root INFO: channel_first : False
[2021/08/15 11:09:53] root INFO: to_rgb : True
[2021/08/15 11:09:53] root INFO: ResizeImage :
[2021/08/15 11:09:53] root INFO: resize_short : 256
[2021/08/15 11:09:53] root INFO: CropImage :
[2021/08/15 11:09:53] root INFO: size : 224
[2021/08/15 11:09:53] root INFO: RandFlipImage :
[2021/08/15 11:09:53] root INFO: flip_code : 1
[2021/08/15 11:09:53] root INFO: NormalizeImage :
[2021/08/15 11:09:53] root INFO: mean : [0.485, 0.456, 0.406]
[2021/08/15 11:09:53] root INFO: order :
[2021/08/15 11:09:53] root INFO: scale : 1.0/255.0
[2021/08/15 11:09:53] root INFO: std : [0.229, 0.224, 0.225]
[2021/08/15 11:09:53] root INFO: loader :
[2021/08/15 11:09:53] root INFO: num_workers : 0
[2021/08/15 11:09:53] root INFO: use_shared_memory : True
[2021/08/15 11:09:53] root INFO: sampler :
[2021/08/15 11:09:53] root INFO: batch_size : 128
[2021/08/15 11:09:53] root INFO: drop_last : False
[2021/08/15 11:09:53] root INFO: name : DistributedBatchSampler
[2021/08/15 11:09:53] root INFO: shuffle : True
[2021/08/15 11:09:53] root INFO: Global :
[2021/08/15 11:09:53] root INFO: checkpoints : None
[2021/08/15 11:09:53] root INFO: device : gpu
[2021/08/15 11:09:53] root INFO: epochs : 20
[2021/08/15 11:09:53] root INFO: eval_during_train : True
[2021/08/15 11:09:53] root INFO: eval_interval : 1
[2021/08/15 11:09:53] root INFO: image_shape : [3, 224, 224]
[2021/08/15 11:09:53] root INFO: output_dir : ./output/
[2021/08/15 11:09:53] root INFO: pretrained_model : output/ResNet50/best_model
[2021/08/15 11:09:53] root INFO: print_batch_step : 1
[2021/08/15 11:09:53] root INFO: save_inference_dir : ./inference
[2021/08/15 11:09:53] root INFO: save_interval : 1
[2021/08/15 11:09:53] root INFO: to_static : False
[2021/08/15 11:09:53] root INFO: use_visualdl : True
[2021/08/15 11:09:53] root INFO: Infer :
[2021/08/15 11:09:53] root INFO: PostProcess :
[2021/08/15 11:09:53] root INFO: class_id_map_file : ./dataset/label_list.txt
[2021/08/15 11:09:53] root INFO: name : Topk
[2021/08/15 11:09:53] root INFO: topk : 5
[2021/08/15 11:09:53] root INFO: batch_size : 10
[2021/08/15 11:09:53] root INFO: infer_imgs : dataset/foods/baby_back_ribs/319516.jpg
[2021/08/15 11:09:53] root INFO: transforms :
[2021/08/15 11:09:53] root INFO: DecodeImage :
[2021/08/15 11:09:53] root INFO: channel_first : False
[2021/08/15 11:09:53] root INFO: to_rgb : True
[2021/08/15 11:09:53] root INFO: ResizeImage :
[2021/08/15 11:09:53] root INFO: resize_short : 256
[2021/08/15 11:09:53] root INFO: CropImage :
[2021/08/15 11:09:53] root INFO: size : 224
[2021/08/15 11:09:53] root INFO: NormalizeImage :
[2021/08/15 11:09:53] root INFO: mean : [0.485, 0.456, 0.406]
[2021/08/15 11:09:53] root INFO: order :
[2021/08/15 11:09:53] root INFO: scale : 1.0/255.0
[2021/08/15 11:09:53] root INFO: std : [0.229, 0.224, 0.225]
[2021/08/15 11:09:53] root INFO: ToCHWImage : None
[2021/08/15 11:09:53] root INFO: Loss :
[2021/08/15 11:09:53] root INFO: Eval :
[2021/08/15 11:09:53] root INFO: CELoss :
[2021/08/15 11:09:53] root INFO: weight : 1.0
[2021/08/15 11:09:53] root INFO: Train :
[2021/08/15 11:09:53] root INFO: CELoss :
[2021/08/15 11:09:53] root INFO: weight : 1.0
[2021/08/15 11:09:53] root INFO: Metric :
[2021/08/15 11:09:53] root INFO: Eval :
[2021/08/15 11:09:53] root INFO: TopkAcc :
[2021/08/15 11:09:53] root INFO: topk : [1, 5]
[2021/08/15 11:09:53] root INFO: Train :
[2021/08/15 11:09:53] root INFO: TopkAcc :
[2021/08/15 11:09:53] root INFO: topk : [1, 5]
[2021/08/15 11:09:53] root INFO: Optimizer :
[2021/08/15 11:09:53] root INFO: lr :
[2021/08/15 11:09:53] root INFO: decay_epochs : [30, 60, 90]
[2021/08/15 11:09:53] root INFO: learning_rate : 0.015
[2021/08/15 11:09:53] root INFO: name : Piecewise
[2021/08/15 11:09:53] root INFO: values : [0.1, 0.01, 0.001, 0.0001]
[2021/08/15 11:09:53] root INFO: momentum : 0.9
[2021/08/15 11:09:53] root INFO: name : Momentum
[2021/08/15 11:09:53] root INFO: regularizer :
[2021/08/15 11:09:53] root INFO: coeff : 0.0005
[2021/08/15 11:09:53] root INFO: name : L2
W0815 11:09:53.427887 9495 device_context.cc:404] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W0815 11:09:53.432844 9495 device_context.cc:422] device: 0, cuDNN Version: 7.6.
[2021/08/15 11:09:58] root INFO: train with paddle 2.1.2 and device CUDAPlace(0)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/tensor/creation.py:125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if data.dtype == np.object:
[{'class_ids': [3, 5, 2, 4, 1], 'scores': [0.73711, 0.16288, 0.09044, 0.00815, 0.00142], 'file_name': 'dataset/foods/baby_back_ribs/319516.jpg', 'label_names': ['beef_tartare', 'baklava', 'baby_back_ribs', 'apple_pie', 'beef_carpaccio']}]
运行完成,最后几行会得到结果如下形式:
[{'class_ids': [5, 1, 3, 4, 2],
'scores': [0.48433, 0.26765, 0.13903, 0.05609, 0.05162],
'file_name': 'dataset/foods/baby_back_ribs/319516.jpg',
'label_names': ['baklava', 'beef_carpaccio', 'beef_tartare', 'apple_pie', 'baby_back_ribs']}]
可以发现,预测结果不对,准确率很低,但整体的项目流程你已经掌握了!
训练轮数还有很大提升空间,自行变动参数直到预测正确为止~
恭喜你学会了paddleclas图像分类!