Skip to content

abhishekh-srivastava/target_temp_detection

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Detecting temperature targets


Neural networks are trained on CMIP6 data to detect the remaining number of years until specific temperature targets are reached.

Tensorflow Code


This code was written in python 3.9.7, tensorflow 2.7.0, tensorflow-probability 0.15.0 and numpy 1.22.2.

Python Environment

The following python environment was used to implement this code.

conda create --name env-noah python=3.9
conda activate env-noah
pip install tensorflow==2.7.0
pip install tensorflow-probability==0.15.0
pip install --upgrade numpy scipy pandas statsmodels matplotlib seaborn palettable progressbar2 tabulate icecream flake8 keras-tuner sklearn jupyterlab black isort jupyterlab_code_formatter
pip install -U scikit-learn
pip install silence-tensorflow tqdm
conda install -c conda-forge cmocean cartopy
conda install -c conda-forge xarray dask netCDF4 bottleneck
conda install -c conda-forge nc-time-axis

Credits


This work is a collaborative effort betweenDr. Noah Diffenbaugh and Dr. Elizabeth A. Barnes.

References

[1] None.

License

This project is licensed under an MIT license.

MIT © Elizabeth A. Barnes

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 92.1%
  • Shell 5.7%
  • Python 2.2%